4V Practical Verification
p for Programmable Data Planes

Jed Liu Robert Soulé
Bill Hallahan Han Wang
Cole Schlesinger Calin Cascaval
Milad Sharif Nick McKeown
Jeongkeun Lee Nate Foster

co:'Y

Fixed-function routers...

T IR IR S A I B IS IR T ER AR 0 §E 8 BEe R TARTAN TN 98885 E I n:rd

l -
1
- i
)

Fixed-function routers...

...how do we know that they work?

=

TR A I 3R 80 002 B I B A R R SR Rl B CER TR I BN R a0l B‘d f

(with apologies to Insane Clown Posse)

Fixed-function routers...

.......

| 4_{.,....,,,...,,.....5.,...5_7555.._- ...how do we know that they work?

~»:.”

138 B

By testing!

Fixed-function routers...

ORI A

= ...how do we know that they work?

138 B

XXX XX

By testing!

Expensive — |ots of packet formats & protocols
Pay cost once, during manufacturing

Programmable routers...

(specifically, programmable data planes)

...how do they work?

o ’"”:!i!iii=!EEE!§§!E!:E:EEE!Eﬁi!iiiiiiiii:!ii.....!!:='EEEEE f L_u ,L; 15

' :
- R ¢ PR m m EEERE — —m e a
‘ ey s .
L, ‘ D)
B
{], §
-

‘. Siiiiiiisiiiiii:l m— FEETHAT mm

E t = -é'h§=‘£=“===£hé:ﬁz‘h::*.ﬁzﬁ&z::ké&és&:=§§‘k§h‘%§ﬁ§=ak‘mﬁﬁ

Arista 7170 series switches

Programmable routers...

(specifically, programmable data planes)
Barefoot Tofino chip
...how do they work?

Arista 7170 series va|tches

Programmable routers...

(specifically, programmable data planes)

...how do they work?

g
------------------ng -------- ---------- REERRREEEERSEERS
. ~m . - = , I’ S

H H }

;mémimsmi-m

Arista 71 7O series va|tches

Programmable routers...

(specifically, programmable data planes)

e New hotness
o Rapid innovation
o Novel uses of network
4+ In-band network telemetry
4+ In-network caching

e e s s = o Nolonger have economy of scale for
Arista 7170 series va|tches traditional testing

Let’s verify!

Bit-level description

”"i:!i!!!lﬂ!!isi=!EEE!§§!E!.E.!E!!!ﬁi!=§§§§===i:§=......!§:='Eiiii i jﬂ_u EEEaamas

tw,

1

:

---------------- m R m EEEEEEEREE _ —m s H
'

= '

. . =gy

: AM [ssazsss sasasses] m— sszzssssizesssass| mm{ 222222 ssasaac] 'H?

= : = B

: Lt TR TI‘,{"f’I AN
R e e e e e o e B S e T T R e R TR e | W)

Arista 7170 series switches

of data-plane behaviour

Give programmers language-based

verification tools

P4 also used as
devices

DL for fixed-function

p4v overview

Automated tool for veritying P4 programs

Considers all paths

o But also practical for large programs

Includes basic safety properties for any program

Extensible framework
o Verify custom, program-specific properties
o Assert-style debugging

ﬁﬁﬁr—xg
gJuQL/‘g\ ,

Anatomy of a P4 program

Actions
Modity headers,
specify forwarding

Headers

Tables
Apply actions
based on header data

Parsers
Convert bitstreams

into headers Controls

Sequences of tables

P4 hardware model

PISA [SIGCOMM 2013]
Protocol-Independent Switch Architecture

Traffic

Manager

A

HHEE

AL

A

A

Parser Ingress Queuing Egress Deparser

P4 by example

e P4 is alow-level language — many gotchas

e |et's explore by examplel!
o |IPv6 router w/ access control list (ACL)

P4 by example

e P4 is alow-level language — many gotchas

e |et's explore by example! control ingress { apply(acl); }
o |Pvb router w/ access control list (ACL) table acl {

P4 by example

e P4 is alow-level language — many gotchas

e |et's explore by example! control ingress { apply(acl); }

o |Pv6 router w/ access control list (ACL) table acl {

reads { ipv6.dstAddr: lpm; }
actions { allow; deny; }

¥

P4 by example

e P4 is alow-level language — many gotchas

e |et's explore by example! control ingress { apply(acl); }

o |Pv6 router w/ access control list (ACL) table acl {

reads { ipv6.dstAddr: lpm; }
actions { allow; deny; }

¥

action allow() {
modify field(std_meta.egress_spec, 1);
¥

P4 by example

e P4 is alow-level language — many gotchas

e |et's explore by example! control ingress { apply(acl); }

o |Pv6 router w/ access control list (ACL) table acl {
reads { ipv6.dstAddr: lpm; }
actions { allow; deny; }

¥

action allow() {
modify field(std_meta.egress_spec, 1);

¥

action deny() { drop(); }

P4 by example

e P4 is alow-level language — many gotchas

e |et's explore by example! control ingress { apply(acl); }

o |Pv6 router w/ access control list (ACL) table acl {

reads { ipv6.dstAddr: lpm; }
actions { allow; deny; }

¥

action allow() {
modify field(std_meta.egress_spec, 1);
¥

action deny() { drop(); }

What could possibly go wrong?

What if we didn’t receive an IPv6 packet?
ipv6 header will be invalid

What goes wrong
Table reads arbitrary values control ingress { apply(acl); }

— Intended ACL policy violated table acl {
reads { ipv6.dstAddr: 1lpm; }

actions { allow; deny; }

¥

action allow() {
modify field(std_meta.egress_spec, 1);
¥

action deny() { drop(); }

What if we didn’t receive an IPv6 packet?
ipv6 header will be invalid

What goes wrong
Table reads arbitrary values control ingress { apply(acl); }

— Intended ACL policy violated table acl {
reads { ipv6.dstAddr: 1lpm; }

actions { allow; deny; }

Can read values from a previous packet ?
— Side channel vulnerability! action allow() {

modify field(std_meta.egress_spec, 1);
¥

action deny() { drop(); }

What if we didn’t receive an IPv6 packet?
ipv6 header will be invalid

What goes wrong
Table reads arbitrary values control ingress { apply(acl); }

— Intended ACL policy violated table acl {
reads { ipv6.dstAddr: lpm; }
actions { allow; deny; }

Can read values from a previous packet ?

— Side channel vulnerability! action allow() {
modify field(std meta.egress spec, 1);

}
Real programs are complicated:

nard to keep validity in your heao

action deny() { drop(); }

Property #1: header validity

What if acl table misses (no rule matches)?
Forwarding decision is unspecified

What goes wrong

~orwarding behaviour depends on control ingress { apply(acl); }
nardware table acl {
e May ot do what you expect ot ooy
e (Code not portable }

action allow() {
modify field(std_meta.egress_spec, 1);
¥

action deny() { drop(); }

Property #2: unambiguous forwarding

Let’s add 6in4 tunnelling!

table tunnel decap {

e T deesn Glids T ethernet ipv4 inner_ipvé6
} etherType “ipv4”

action decap 6in4() {
copy_header(ipv6, inner_ipv6);
remove header(inner_ipv6);

¥

table tunnel term {

actions { term 6in4; }

¥

action term 6in4() {
remove header(ipv4);
modify field(ethernet.etherType, 0x86dd);

¥

Let’s add 6in4 tunnelling!

table tunnel decap {

} etherType “ipv4”
action decap_6in4() { tunnel decap
copy_header(ipv6, inner _ipv6);
remove header(inner _ipv6); .
) ipv4
ethernet
table tunnel term { etherType “ipv4” |pv6

actions { term 6in4; }

¥

action term 6in4() {
remove header(ipv4);
modify field(ethernet.etherType, 0x86dd);

¥

Let’s add 6in4 tunnelling!

table tunnel decap {

actions { decap 6in4; }

¥

action decap 6in4() {
copy_header(ipv6, inner_ipv6);
remove header(inner_ipv6);

¥

table tunnel term {

actions { term 6in4; }

¥

action term 6in4() {
remove_ header(ipv4);
modify field(ethernet.etherType, 0x86dd);

¥

ethernet

etherType “ipv4”

ethernet

etherType “ipv4”

ethernet

etherType “ipv6”

ipv4 inner_ipvé6

* tunnel decap

ipv4
ipvé6

* tunnel term

ipv6

Let’s add 6in4 tunnelling!

NOT SURE IF IPV4

ethernet

etherType “ipv4”

ipv4

ipv6

A look behind the curtain

INn PISA, state is copied verbatim from ingress to egress...

Traffic

Manager

2

TVvveY
HHHE

A
AL

A)

Parser Ingress \/ Egress Deparser

A look behind the curtain

In PISA, state is copied verbatim from ingress to egress...

Some architectures use parser and deparser to bridge state!

HHEE
HHEE

A A

vV uuv

vevvuwvY
vevuuv

Parser Ingress \/ Egress Deparser

29

What if the architecture reparses the packet?
e |Pv4 and IPv6 are mutually exclusive protocols

What goes wrong

ipv4

ethernet
etherType “ipv4” ipv6

What if the architecture reparses the packet?
e |Pv4 and IPv6 are mutually exclusive protocols

What goes wrong

ipv4 deparse
ethernet == ethernet ipv6 ipv4

etherType “ipv4” ipv6 etherType “ipv4”

What if the architecture reparses the packet?
e |Pv4 and IPv6 are mutually exclusive protocols

What goes wrong

ipv4 deparse
ethernet == ethernet ipv6 ipv4

etherType “ipv4” ipv6 etherType “ipv4”

What if the architecture reparses the packet?
e |Pv4 and IPv6 are mutually exclusive protocols

What goes wrong

ipv4 deparse
ethernet == ethernet ipv6 ipv4

etherType “ipv4” ipv6 etherType “ipva’

Property #3: reparseability

Another look behind the curtain

e Hardware devices have limited resources

e Compilers have options to improve resource usage
o e.g, it headers are mutually exclusive in parser, assume they stay mutually

exclusive in rest of program
o Mutually exclusive headers can be overlaid in memory!

ipv4

What if headers share memory?

e |Pv4 and IPv6 might be overlaid ethernet ipv4 inner_ipvé6

etherType “ipv4”
What goes wrong *
, tunnel decap
Data corruption
e c.g,tunnel_decap clobbers ipv4 ipv4
ethernet

etherType “ipv4” ipv6

Parsers are complicated in practice
Hard to keep track of mutually exclusive states

Property #4: mutual exclusion of headers

Types of properties

General safety
e Header validity
e Arithmetic-overflow checking
e [ndex bounds checking (header stacks, registers, meters, ...)

Architectural
e Unambiguous forwarding
e Reparseability
e Mutual exclusion of headers
e (orrect metadata usage (e.g., read-only metadata)

Program-specific
e (Custom assertions in P4 program — e.g., IPv4 tt1 correctly decremented

Challenge #1: imprecise semantics

precise semantics
Defined semantics by trans
GCL (a simple imperative la

P4 language spec doesn't give

ation to

nguage)

Challenge #1: imprecise semantics

Source
Program

P
st 2

[GCL Program]

Symbolic Executor —>[Test Input j

[Expected Output j

e P4 language spec doesn't give
orecise semantics
e Defined semantics by translation to
GCL (a simple imperative language)
e [ested semantics
o Symbolically executed GCL to

generate input-output tests for
several programs

Challenge #1: imprecise semantics

e P4 |language spec doesn't give
precise semantics

Souree e Defined semantics by translation to
> oo GCL (a simple imperative language)
o e e [ested semantics
(o rogm) o Symbolically executed GCL to
I v generate input-output tests for
Symbolic Executor —>[Test Input j—» Tog)?é‘del severa] Drograms
l v o Ran w/ Barefoot P4 compiler &

[Expected Output Actual Output j

Tofino simulator

same?

Challenge #2: modelling the control plane

e AP4 program isjust half t
o Table rules are not statical

ne program

y known

o Populated by the control plane at run time

table acl {
reads {

ipv6.dstAddr: lpm;

¥

actions { allow; deny; }

¥

ﬁ

T
52

s
g

2001:db8::/32

deny

*

accept

Challenge #2: modelling the control plane

e A P4 program is just half the program P
o Table rules are not statically known @@
o Populated by the control plane at run time

s
A0

(@ Action] acl <hit> (allow);

std _meta.egress spec := 1)
table acl {
reads { [] (@ Action] acl <hit> (deny);
1pv6.dstAddr: lpm; std meta.egress spec := 511)
}
} actions { allow; deny; } [] @[Action] acl <miss>

Tables translated into unconstrained nondeterministic choice

Challenge #2: modelling the control plane

e A P4 program is just half the program P
o Table rules are not statically known @@
o Populated by the control plane at run time ~

e Control planes are caretully programmed \/

o Tables rarely take arbitrary actions

e [0 rule out false positives, need to model behaviour of Prne > N

control plane

(@ Action] acl <hit> (allow);

std _meta.egress spec := 1)
table acl {
reads { [] (@ Action] acl <hit> (deny);
1pv6.dstAddr: lpm; std meta.egress spec := 511)
}
actions { allow; deny; } [] @[Action] acl <miss>

¥

Tables translated into unconstrained nondeterministic choice

Control-plane interface

Interface Program

e Given as second input to p4v
S Constrains choices made by tables

[GCLProgram | ® Written in domain-specific syntax

Control-plane interface

Interface Program

e (iven as second input to p4v
—r g ® Constrains choices made by tables

" Gorresam | ® Written in domain-specific syntax

\\\77

table acl { assume
Pe?g\slédstAddr‘: 1pm; reads(acl, ipv6.dstAddr) == 2001:db8::/32
} implies

actions { allow; deny; }

} action(acl) == deny

Control-plane interface

Interface Program
e (iven as second input to p4v

e T Constrains choices made by tables

C Gorrogam | ® Written in domain-specific syntax

table ac! { assume
'wﬁxéﬁﬂNMm:mm reads(acl, ipv6.dstAddr) == 2001:db8::/32
;ctions { allow; deny; } implies

} action(acl) == deny

table tunnel decap {

actions { decap_6in4; } assume
} action(tunnel decap) == decap 6in4
table tunnel_term { 1ff

sctions { term 6ind; } action(tunnel term) == term 6in4

¥

e . Challenge #3: annotation burden

, Many verification tools require users to annotate both
v(ﬁ — assumptions and assertions.

GCL Program . . |
L ¥ J p4V can automaUcally generate assertions for many propertles

[Annotated)

Currently supported:

e Header validity
Unambiguous forwarding
Reparseability
All valid headers deparsed
Expression definedness
ndex bounds

Challenge #4: handling large programs

e Not using compositional verification
o High burden: needs annotations at component boundaries

e Not using symbolic execution
o Exponential path explosion — explicitly exploring paths is not tractable

Challenge #4: handling large programs

e Not using compositional verification
o High burden: needs annotations at component boundaries

e Not using symbolic execution
o Exponential path explosion — explicitly exploring paths is not tractable

e Instead, generate single logical formula (a verification condition)

o Formula valid & program satisfies assertions on all execution paths
o Hand formula to solver — verification success or counterexample

Challenge #4: handling large programs

Not using compositional verification
o High burden: needs annotations at component boundaries

Not using symbolic execution
o Exponential path explosion — explicitly exploring paths is not tractable

Instead, generate single logical formula (a verification condition)

o Formula valid & program satisfies assertions on all execution paths
o Hand formula to solver — verification success or counterexample

Also do standard optimizations
o (Constant folding / propagation
o Dead-code elimination

p4v architecture

1. Start w/ CPl & P4 program
2. Translate to GCL

p 3. Auto-annotate w/
o T 1 assertions

f
GCL Program j

Control-Plane Source
Interface Program

\.

v
[Annotated j

Control-Plane Source
Interface Program

P

143

-

GCL Program j

Annotated

Verlﬁcatlon
Condition

-
\.
[Optlmlzed

— WY &

p4v architecture

1

. Start w/ CPIl & P4 program
. Translate to GCL

Auto-annotate w/
assertions

Standard optimizations
Generate formula

Control-Plane Source

Interface

Program

s 20

P

-

a

GCL Program j

[Annotated]

[Optlmlzed

Verlﬁcatlon
Condition

J
}—

*

A
v

@

[Re

Hl_'lf_|f_1f_'|f'_|f_—|l_'| @
M
=)

@

2]

p4v architecture

1t] Passed

11t] Failed
unterexample]

] start

] _parse_ethernet
] ethernet.dst _addr = 9x000000000000
] ethernet.src_addr = 0x000000000000

] ethernet.ether_type = Oxf7ff
rt] (not (=

ipv4.valid 1we))

4

X

1.
2.

W

~N o Uk

Start w/ CPl & P4 program
Translate to GCL
Auto-annotate w/
assertions

Standard optimizations
Generate formula

Send to Z3

Success or counterexample

e [nput packet
e Program trace
e \iolated assertion

Evaluation: header validity in switch.p4

Statistics
o 5599 LoC
o 538 parser states
o 120 match-action tables

Control-plane interface
o /58 LoC
~2 days' programmer effort
Default actions (31)
Fabric wellformedness (14)
Table actions (66)
Guarded reads (10)
Action data (14)

Found 10 bugs
o Parser bugs (2)
o Action flaws (4)
o Infeasible control-plane (3)
o Invalid table read (1)

O O O O O O

Verification time (s)

Evaluation: performance

B w/ointerface [} w/interface

1000 O
O
O
100
O
O
10 ©
S
O
1 5
S O
Y
(@)
=
@)
: [||||““ lll &
N
n---.....' ~
5 0 8 0 2 9 2T Q5 0 05 T R — £ oo 5 oo
L% B 2 0 8 3 &0 2 = £ & ® D B £ O O O Qa
5 32 3T & X & 5 X Y = 0 ¥ 0 £ 0 5 0 & £ o0 k
Ooo T © % © N @ 9 <o et UQL_Q-;x_Q)
= s 9 ol B I O | a T O ®© a o O
I o O X 4 —] o 9 >
) 0 ®© iy o © @ Q. =
= S = o ! & £ O S
= v 2 o x = -
£ o 8 -
= =

O

e Diverse set of 23 programs

Open & closed source
Conventional forwarding
Data centre routing
Content-based networking
Performance monitoring
INn-network processing

e Header validity for all but two

Cross-cutting property
Reasoning about almost all
control-flow paths

e All but three programs checked
in under a minute

<1 s for most

e One ran out of memory

hyperp4: virtual data planes

Related work

Transter functions & reachability analysis

o Xie et al. (2005), Anteater (2011), Header space analysis (2012)

Incremental verification & optimizations

o VeriFlow (2013), Atomic Predicates (2013), ddNF (2016), network symmetry (2016)
Control-plane veritication

o RCC (2015), Batfish (2015), ARC (2016), Bagpipe (2016), Minesweeper (2017)
Middlebox verification

o Dobrescu & Argyraki (2015), SymNet (2016), Panda et al. (2017), VigNAT (2017)
P4 verification

o McKeown et al. (2016), PAK (2018), p4pktgen (2018), p4-assert (2018), Vera (2018)

p4v: a practical tool for all-paths verification of P4 programs

Future work

e More front-ends & architectures
o P46 Support
o Other architectures (e.g., Xilinx FPGAS)

e (Control-plane interfaces
o Integrate into P4 language?
o Manually written — can we synthesize from traces?
o Trusted — can we validate?

e Verity network-wide properties?
o Problem becomes undecidable [Panda et al. 20171
o Likely need to abstract data plane behaviour to get scalability

4V Practical Verification
p for Programmable Data Planes

Jed Liu Cole Schlesinger Jeongkeun Lee Han Wang Nick McKeown
Bill Hallahan Milad Sharif Robert Soulé Calin Cascaval Nate Foster
Automated all-paths verification
//
— \4/ y 455 Scales to large programs
e A \x (switch.p4)
 E— example
e Clean control-data plane
= interface

