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Fixed-function routers...
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Fixed-function routers...

...how do we know that they work?
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Fixed-function routers...
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By testing!

Expensive — |ots of packet formats & protocols
Pay cost once, during manufacturing




Programmable routers...

(specifically, programmable data planes)

...how do they work?
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Programmable routers...

(specifically, programmable data planes)
Barefoot Tofino chip
...how do they work?

Arista 7170 series va|tches
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Programmable routers...

(specifically, programmable data planes)

e New hotness
o Rapid innovation
o Novel uses of network
4+ In-band network telemetry
4+ In-network caching

e e s s = o Nolonger have economy of scale for
Arista 7170 series va|tches traditional testing




Let’s verify!

Bit-level description
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of data-plane behaviour

Give programmers language-based

verification tools

P4 also used as
devices

DL for fixed-function



p4v overview

Automated tool for veritying P4 programs

Considers all paths

o But also practical for large programs

Includes basic safety properties for any program

Extensible framework
o Verify custom, program-specific properties
o Assert-style debugging
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Anatomy of a P4 program

Actions
Modity headers,
specify forwarding

Headers

Tables
Apply actions
based on header data

Parsers
Convert bitstreams

into headers Controls

Sequences of tables



P4 hardware model

PISA [SIGCOMM 2013]
Protocol-Independent Switch Architecture

Traffic

Manager
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HHEE
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Parser Ingress Queuing Egress Deparser



P4 by example

e P4 is alow-level language — many gotchas

e |et's explore by examplel!
o |IPv6 router w/ access control list (ACL)
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P4 by example

e P4 is alow-level language — many gotchas

e |et's explore by example! control ingress { apply(acl); }

o |Pv6 router w/ access control list (ACL) table acl {

reads { ipv6.dstAddr: lpm; }
actions { allow; deny; }

¥

action allow() {
modify field(std_meta.egress_spec, 1);
¥

action deny() { drop(); }

What could possibly go wrong?



What if we didn’t receive an IPv6 packet?
ipv6 header will be invalid

What goes wrong
Table reads arbitrary values control ingress { apply(acl); }

— Intended ACL policy violated table acl {
reads { ipv6.dstAddr: 1lpm; }

actions { allow; deny; }

¥
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What if we didn’t receive an IPv6 packet?
ipv6 header will be invalid

What goes wrong
Table reads arbitrary values control ingress { apply(acl); }

— Intended ACL policy violated table acl {
reads { ipv6.dstAddr: lpm; }
actions { allow; deny; }

Can read values from a previous packet ?

— Side channel vulnerability! action allow() {
modify field(std meta.egress spec, 1);

}
Real programs are complicated:

nard to keep validity in your heao

action deny() { drop(); }

Property #1: header validity



What if acl table misses (no rule matches)?
Forwarding decision is unspecified

What goes wrong

~orwarding behaviour depends on control ingress { apply(acl); }
nardware table acl {
e May ot do what you expect ot ooy
e (Code not portable }

action allow() {
modify field(std_meta.egress_spec, 1);
¥

action deny() { drop(); }

Property #2: unambiguous forwarding



Let’s add 6in4 tunnelling!

table tunnel decap {

e T deesn Glids T ethernet ipv4 inner_ipvé6
} etherType “ipv4”

action decap 6in4() {
copy_header(ipv6, inner_ipv6);
remove header(inner_ipv6);

¥

table tunnel term {

actions { term 6in4; }

¥

action term 6in4() {
remove header(ipv4);
modify field(ethernet.etherType, 0x86dd);

¥



Let’s add 6in4 tunnelling!

table tunnel decap {

} etherType “ipv4”
action decap_6in4() { tunnel decap
copy_header(ipv6, inner _ipv6);
remove header(inner _ipv6); .
) ipv4
ethernet
table tunnel term { etherType “ipv4” |pv6

actions { term 6in4; }

¥

action term 6in4() {
remove header(ipv4);
modify field(ethernet.etherType, 0x86dd);

¥



Let’s add 6in4 tunnelling!

table tunnel decap {

actions { decap 6in4; }

¥

action decap 6in4() {
copy_header(ipv6, inner_ipv6);
remove header(inner_ipv6);

¥

table tunnel term {

actions { term 6in4; }

¥

action term 6in4() {
remove_ header(ipv4);
modify field(ethernet.etherType, 0x86dd);

¥

ethernet

etherType “ipv4”

ethernet

etherType “ipv4”

ethernet

etherType “ipv6”

ipv4 inner_ipvé6

* tunnel decap

ipv4
ipvé6

* tunnel term

ipv6



Let’s add 6in4 tunnelling!

NOT SURE IF IPV4

ethernet

etherType “ipv4”

ipv4

ipv6




A look behind the curtain

INn PISA, state is copied verbatim from ingress to egress...

Traffic

Manager

2

TVvveY
HHHE

A
AL

A )

Parser Ingress \/ Egress  Deparser



A look behind the curtain

In PISA, state is copied verbatim from ingress to egress...

Some architectures use parser and deparser to bridge state!

HHEE
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Parser Ingress \/ Egress  Deparser
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What if the architecture reparses the packet?
e |Pv4 and IPv6 are mutually exclusive protocols

What goes wrong

ipv4

ethernet
etherType “ipv4” ipv6
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What if the architecture reparses the packet?
e |Pv4 and IPv6 are mutually exclusive protocols

What goes wrong

ipv4 deparse
ethernet == ethernet ipv6 ipv4

etherType “ipv4” ipv6 etherType “ipva’

Property #3: reparseability



Another look behind the curtain

e Hardware devices have limited resources

e Compilers have options to improve resource usage
o e.g, it headers are mutually exclusive in parser, assume they stay mutually

exclusive in rest of program
o Mutually exclusive headers can be overlaid in memory!

ipv4




What if headers share memory?

e |Pv4 and IPv6 might be overlaid ethernet ipv4 inner_ipvé6

etherType “ipv4”
What goes wrong *
, tunnel decap
Data corruption
e c.g,tunnel_decap clobbers ipv4 ipv4
ethernet

etherType “ipv4” ipv6

Parsers are complicated in practice
Hard to keep track of mutually exclusive states

Property #4: mutual exclusion of headers



Types of properties

General safety
e Header validity
e Arithmetic-overflow checking
e [ndex bounds checking (header stacks, registers, meters, ...)

Architectural
e Unambiguous forwarding
e Reparseability
e Mutual exclusion of headers
e (orrect metadata usage (e.g., read-only metadata)

Program-specific
e (Custom assertions in P4 program — e.g., IPv4 tt1 correctly decremented



Challenge #1: imprecise semantics

precise semantics
Defined semantics by trans
GCL (a simple imperative la

P4 language spec doesn't give

ation to

nguage)



Challenge #1: imprecise semantics

Source
Program

P
st 2

[ GCL Program ]

Symbolic Executor —>[ Test Input j

[ Expected Output j

e P4 language spec doesn't give
orecise semantics
e Defined semantics by translation to
GCL (a simple imperative language)
e [ested semantics
o Symbolically executed GCL to

generate input-output tests for
several programs




Challenge #1: imprecise semantics

e P4 |language spec doesn't give
precise semantics

Souree e Defined semantics by translation to
> oo GCL (a simple imperative language)
o e e [ested semantics
(o rogm ) o Symbolically executed GCL to
I v generate input-output tests for
Symbolic Executor —>[ Test Input j—» Tog)?é‘del severa] Drograms
l v o Ran w/ Barefoot P4 compiler &

[ Expected Output Actual Output j

Tofino simulator

same?



Challenge #2: modelling the control plane

e AP4 program isjust half t
o Table rules are not statical

ne program

y known

o Populated by the control plane at run time

table acl {
reads {

ipv6.dstAddr: lpm;

¥

actions { allow; deny; }

¥

ﬁ

T
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2001:db8::/32

deny

*

accept




Challenge #2: modelling the control plane

e A P4 program is just half the program P
o Table rules are not statically known @@
o Populated by the control plane at run time

s
A0

( @ Action ] acl <hit> (allow);

std _meta.egress spec := 1)
table acl {
reads { [] ( @ Action ] acl <hit> (deny);
1pv6.dstAddr: lpm; std meta.egress spec := 511)
}
} actions { allow; deny; } [ ] @[ Action ] acl <miss>

Tables translated into unconstrained nondeterministic choice



Challenge #2: modelling the control plane

e A P4 program is just half the program P
o Table rules are not statically known @@
o Populated by the control plane at run time ~

e Control planes are caretully programmed \/

o Tables rarely take arbitrary actions

e [0 rule out false positives, need to model behaviour of Prne > N

control plane

( @ Action ] acl <hit> (allow);

std _meta.egress spec := 1)
table acl {
reads { [] ( @ Action ] acl <hit> (deny);
1pv6.dstAddr: lpm; std meta.egress spec := 511)
}
actions { allow; deny; } [ ] @[ Action ] acl <miss>

¥

Tables translated into unconstrained nondeterministic choice



Control-plane interface

Interface Program

e Given as second input to p4v
S Constrains choices made by tables

[ GCLProgram | ® Written in domain-specific syntax




Control-plane interface

Interface Program

e (iven as second input to p4v
—r g ® Constrains choices made by tables

" Gorresam | ® Written in domain-specific syntax

\\\77

table acl { assume
Pe?g\slédstAddr‘: 1pm; reads(acl, ipv6.dstAddr) == 2001:db8::/32
} implies

actions { allow; deny; }

} action(acl) == deny



Control-plane interface

Interface  Program
e (iven as second input to p4v

e T Constrains choices made by tables

C Gorrogam | ® Written in domain-specific syntax

table ac! { assume
'wﬁxéﬁﬂNMm:mm reads(acl, ipv6.dstAddr) == 2001:db8::/32
;ctions { allow; deny; } implies

} action(acl) == deny

table tunnel decap {

actions { decap_6in4; } assume
} action(tunnel decap) == decap 6in4
table tunnel_term { 1ff

sctions { term 6ind; } action(tunnel term) == term 6in4

¥



e . Challenge #3: annotation burden

, Many verification tools require users to annotate both
v(ﬁ — assumptions and assertions.

GCL Program . . |
L ¥ J p4V can automaUcally generate assertions for many propertles

[ Annotated )

Currently supported:

e Header validity
Unambiguous forwarding
Reparseability
All valid headers deparsed
Expression definedness
ndex bounds




Challenge #4: handling large programs

e Not using compositional verification
o High burden: needs annotations at component boundaries

e Not using symbolic execution
o Exponential path explosion — explicitly exploring paths is not tractable
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Challenge #4: handling large programs

Not using compositional verification
o High burden: needs annotations at component boundaries

Not using symbolic execution
o Exponential path explosion — explicitly exploring paths is not tractable

Instead, generate single logical formula (a verification condition)

o Formula valid & program satisfies assertions on all execution paths
o Hand formula to solver — verification success or counterexample

Also do standard optimizations
o (Constant folding / propagation
o Dead-code elimination



p4v architecture

1. Start w/ CPl & P4 program
2. Translate to GCL

p 3. Auto-annotate w/
o T 1 assertions

f
GCL Program j

Control-Plane Source
Interface Program

\.

v
[ Annotated j




Control-Plane Source
Interface Program

P
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GCL Program j

Annotated

Verlﬁcatlon
Condition

-
\.
[ Optlmlzed

— WY &

p4v architecture

1

. Start w/ CPIl & P4 program
. Translate to GCL

Auto-annotate w/
assertions

Standard optimizations
Generate formula



Control-Plane Source

Interface

Program
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p4v architecture

1t] Passed

11t] Failed
unterexample]

] start

] _parse_ethernet
] ethernet.dst _addr = 9x000000000000
] ethernet.src_addr = 0x000000000000

] ethernet.ether_type = Oxf7ff
rt ] (not (=

ipv4.valid 1we))

4

X

1.
2.

W

~N o Uk

Start w/ CPl & P4 program
Translate to GCL
Auto-annotate w/
assertions

Standard optimizations
Generate formula

Send to Z3

Success or counterexample

e [nput packet
e Program trace
e \iolated assertion



Evaluation: header validity in switch.p4

Statistics
o 5599 LoC
o 538 parser states
o 120 match-action tables

Control-plane interface
o /58 LoC
~2 days' programmer effort
Default actions (31)
Fabric wellformedness (14)
Table actions (66)
Guarded reads (10)
Action data (14)

Found 10 bugs
o Parser bugs (2)
o Action flaws (4)
o Infeasible control-plane (3)
o Invalid table read (1)

O O O O O O




Verification time (s)

Evaluation: performance
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e Diverse set of 23 programs

Open & closed source
Conventional forwarding
Data centre routing
Content-based networking
Performance monitoring
INn-network processing

e Header validity for all but two

Cross-cutting property
Reasoning about almost all
control-flow paths

e All but three programs checked
in under a minute

<1 s for most

e One ran out of memory

hyperp4: virtual data planes



Related work

Transter functions & reachability analysis

o Xie et al. (2005), Anteater (2011), Header space analysis (2012)

Incremental verification & optimizations

o VeriFlow (2013), Atomic Predicates (2013), ddNF (2016), network symmetry (2016)
Control-plane veritication

o RCC (2015), Batfish (2015), ARC (2016), Bagpipe (2016), Minesweeper (2017)
Middlebox verification

o Dobrescu & Argyraki (2015), SymNet (2016), Panda et al. (2017), VigNAT (2017)
P4 verification

o McKeown et al. (2016), PAK (2018), p4pktgen (2018), p4-assert (2018), Vera (2018)

p4v: a practical tool for all-paths verification of P4 programs



Future work

e More front-ends & architectures
o P46 Support
o Other architectures (e.g., Xilinx FPGAS)

e (Control-plane interfaces
o Integrate into P4 language?
o Manually written — can we synthesize from traces?
o Trusted — can we validate?

e Verity network-wide properties?
o Problem becomes undecidable [Panda et al. 20171
o Likely need to abstract data plane behaviour to get scalability
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Automated all-paths verification
//
— \4/ y 455 Scales to large programs
e A \x (switch.p4)
 E— example
e Clean control-data plane
= interface




