
Secure Web Applications via Automatic Partitioning

Stephen Chong Jed Liu Andrew C. Myers Xin Qi
K. Vikram Lantian Zheng Xin Zheng

Department of Computer Science
Cornell University

{schong,liujed,andru,qixin,kvikram,zlt,xinz}@cs.cornell.edu

Abstract
Swift is a new, principled approach to building web applications
that are secure by construction. In modern web applications, some
application functionality is usually implemented as client-side code
written in JavaScript. Moving code and data to the client can create
security vulnerabilities, but currently there are no good methods for
deciding when it is secure to do so.

Swift automatically partitions application code while providing
assurance that the resulting placement is secure and efficient. Ap-
plication code is written as Java-like code annotated with informa-
tion flow policies that specify the confidentiality and integrity of
web application information. The compiler uses these policies to
automatically partition the program into JavaScript code running in
the browser, and Java code running on the server. To improve in-
teractive performance, code and data are placed on the client side.
However, security-critical code and data are always placed on the
server. Code and data can also be replicated across the client and
server, to obtain both security and performance. A max-flow al-
gorithm is used to place code and data in a way that minimizes
client–server communication.

Categories and Subject Descriptors: D.4.6 [Security and Protec-
tion]: Information flow controls, D.3.3 [Language Constructs and
Features]: Frameworks, I.2.2 [Automatic Programming]: Program
transformation

General Terms: Security, Languages

Keywords: Information flow, security policies, compilers.

1. Introduction
Web applications are client–server applications in which a web

browser provides the user interface. They are a critical part of our
infrastructure, used for banking and financial management, email,
online shopping and auctions, social networking, and much more.
The security of information manipulated by these systems is cru-
cial, and yet these systems are not being implemented with ad-
equate security assurance. In fact, web applications are recently
reported to comprise 69% of all Internet vulnerabilities [24]. The
problem is that with current implementation methods, it is difficult

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07, October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

to know whether an application adequately enforces the confiden-
tiality or integrity of the information it manipulates.

Recent trends in web application design have exacerbated the
security problem. To provide a rich, responsive user interface, ap-
plication functionality is pushed into client-side JavaScript [8] code
that executes within the web browser. JavaScript code is able to ma-
nipulate user interface components and can store information per-
sistently on the client side by encoding it as cookies. These web ap-
plications are distributed applications, in which client- and server-
side code exchange protocol messages represented as HTTP re-
quests and responses. In addition, most browsers allow JavaScript
code to issue its own HTTP requests, a functionality used in the
Ajax development approach (Asynchronous JavaScript and XML).

With application code and data split across differently trusted
tiers, the developer faces a difficult question: when is it secure to
place code and data on the client? All things being equal, the devel-
oper would usually prefer to run code and store data on the client,
avoiding server load and client–server communication latency. But
moving information or computation to the client can easily create
security vulnerabilities.

For example, suppose we want to implement a simple web ap-
plication in which the user has three chances to guess a number be-
tween one and ten, and wins if a guess is correct. Even this simple
application has subtleties. There is a confidentiality requirement:
the user should not learn the true number until after the guesses are
complete. There are integrity requirements, too: the match between
the guess and the true number should be computed in a trustworthy
way, and the guesses taken must also be counted correctly.

The guessing application could be implemented almost entirely
as client-side JavaScript code, which would make the user interface
very responsive and would offload the most work from the server.
But it would be insecure: a client with a modified browser could
peek at the true number, take extra guesses, or simply lie about
whether a guess was correct. On the other hand, suppose guesses
that are not valid numbers between one and ten do not count against
the user. Then it is secure and indeed preferable to perform the
bounds check on the client side. Currently, web application devel-
opers lack principled ways to make decisions about where code and
data can be securely placed.

We introduce the Swift system, a way to write web applica-
tions that are secure by construction. Applications are written in
a higher-level programming language in which information secu-
rity requirements are explicitly exposed as declarative annotations.
The compiler uses these security annotations to decide where code
and data in the system can be placed securely. Code and data are
partitioned at fine granularity, at the level of individual expressions
and object fields. Developing programs in this way ensures that
the resulting distributed application protects the confidentiality and

integrity of information. The general enforcement of information
integrity also guards against common vulnerabilities such as SQL
injection and cross-site scripting.

Swift applications are not only more secure, they are also eas-
ier to write: control and data do not need to be explicitly trans-
ferred between client and server through the awkward extralinguis-
tic mechanism of HTTP requests. Automatic placement has an-
other benefit. In current practice, the programmer has no help de-
signing the protocol or interfaces by which client and server code
communicate. With Swift, the compiler automatically synthesizes
secure, efficient interfaces for communication.

Of course, others have noticed that web applications are hard to
make secure and awkward to write. Prior research has addressed se-
curity and expressiveness separately. One line of work has tried to
make web applications more secure, through analysis [11, 27, 12]
or monitoring [10, 17, 28] of server-side application code. How-
ever, this work does not help application developers decide when
code and data can be placed on the client. Conversely, the awk-
wardness of programming web applications has motivated a sec-
ond line of work toward a single, uniform language for writing
distributed web applications [9, 4, 21, 30, 29]. However, this work
largely ignores security; while the programmer controls code place-
ment, nothing ensures the placement is secure.

Swift thus differs from prior work by addressing both problems
at once. Swift automatically partitions web application code while
also providing assurance that the resulting placement enforces se-
curity requirements. Addressing both problems at the same time
makes it possible to do a better job at each of them.

Prior work on program partitioning in the Jif/split language [32,
33] has explored using security policies to drive code and data par-
titioning onto a general distributed system. Applying this approach
to the particularly important domain of web applications offers both
new challenges and new opportunities. In the Swift trust model,
the client is less trusted than the server. Code is placed onto the
client in order to optimize interactive performance, which has not
been previously explored. Swift has a more sophisticated partition-
ing algorithm that exploits new replication strategies. And because
Swift supports a richer programming language with better support
for dynamic security enforcement, it can control information flow
even as a rich, dynamic graphical user interface is used to interact
with security-critical information.

The remainder of the paper is structured as follows. Section 2
gives an overview of the Swift architecture. Section 3 describes the
programming model, based on an extension of the Jif programming
language [16] with support for browser-based user interfaces. Sec-
tions 4 and 5 explain how high-level Swift code is compiled into an
intermediate language, WebIL, and then partitioned into Java and
JavaScript code. Section 6 presents results and experience using
Swift, Section 7 discusses related work, and Section 8 concludes.

2. Architecture
Figure 1 depicts the architecture of Swift. The system starts with

annotated Java source code at the top of the diagram. Proceeding
from top to bottom, a series of program transformations converts
the code into a partitioned form shown at the bottom, with Java
code running on the web server and JavaScript code running on the
client web browser.

Jif source code.
The source language of the program is an extended version of the

Jif 3.0 programming language [14, 16]. Jif extends the Java pro-
gramming language with language-based mechanisms for informa-
tion flow control and access control. Information security policies

Jif
source
code

confidentiality/
integrity labels

WebIL code server/client
constraints

label projection

Located WebIL code
server/
client

placement

partitioning

Java
server
code

Java
client
code

JavaScript
client
code

CPS conversion

GWT

Swift
client

runtime

GWT
runtime
library

Swift
server

runtime

Java
servlet

framework HTTP

Web server Web browser

Figure 1: The Swift architecture

can be expressed directly within Jif programs, as labels on pro-
gram variables. By statically checking a program, the Jif compiler
ensures that these labels are consistent with flows of information in
the program.

The original model of Jif security is that if a program passes
compile-time static checking, and the program runs on a trustwor-
thy platform, then the program will enforce the information secu-
rity policies expressed as labels. For Swift, we assume that the web
server can be trusted, but the client machine and browser may be
buggy or malicious. Therefore, Swift must transform program code
so that the application runs securely, even though it runs partly on
the untrusted client.

WebIL intermediate code.
The first phase of program transformation converts Jif programs

into code in an intermediate language we call WebIL. As in Jif,
WebIL types can include annotations; however, the space of al-
lowed annotations is much simpler, describing constraints on the
possible locations of application code and data. For example, the
annotation S means that the annotated code or data must be placed
on the web server. The annotation C?S means that it must be placed
on the server, and may optionally be replicated on the client as well.
WebIL is useful for web application programming in its own right,
although it does not provide security assurance.

WebIL optimization.
The initial WebIL annotations are merely constraints on code and

data placement. The second phase of compilation decides the exact
placement and replication of code and data between the client and
server, in accordance with these constraints. The system attempts
to minimize the cost of the placement, in particular by avoiding
unnecessary network messages. The minimization of the partition-
ing cost is expressed as an integer programming (IP) problem, and
maximum flow methods are then used to find a good partitioning.

Splitting code.
Once code and data placements have been determined, the com-

piler transforms the original Java code into two Java programs,

one representing server-side computation and the other, client-side
computation. This is a fine-grained transformation. Different state-
ments within the same method may run variously on the server and
the client, and similarly with different fields of the same object.
What appeared as sequential statements in the program source code
may become separate code fragments on the client and server that
invoke each other via network messages. Because control trans-
fers become explicit messages, the transformation to two separate
Java programs is similar to a conversion to continuation-passing
style [20, 22].

JavaScript output.
Although our compiler generates Java code to run on the client,

this Java code actually represents JavaScript code. The Google
Web Toolkit (GWT) [9] is used to compile the Java code down
to JavaScript. On the client, this code then uses the GWT run-time
library and our own run-time support. On the server, the Java appli-
cation code links against Swift’s server-side run-time library, which
in turn sits on top of the standard Java servlet framework.

The final application code generated by the compiler uses an
Ajax approach to securely carry out the application described in
the original source code. The application runs as JavaScript on the
client browser, and issues its own HTTP requests to the web server,
which responds with XML data.

From the browser’s perspective, the application runs as a single
web page, with most user actions (e.g., clicking on buttons) handled
by JavaScript code. This approach seems to be the current trend in
web application design, replacing the older model in which a web
application is associated with many different URLs. One result of
the change is that the browser “back” and “forward” buttons no
longer have the originally intended effect on the web application,
though this can be largely hidden, as is done in the GWT.

Partitioning and replication.
Compiling a Swift application puts some code and data onto the

client. Code and data that implement the user interface clearly must
reside on the client. Other code and data are placed on the client to
avoid the latency of communicating with the server. With this ap-
proach, the web application can have a rich, highly responsive user
interface that waits for server replies only when security demands
that the server be involved.

In order to enforce the security requirements in the Jif source
code, information flows between the client and the server must be
strictly controlled. In particular, confidential information must not
be sent to the client, and information received from the client can-
not be trusted. The Swift compilation process generates code that
satisfies these constraints.

One novel feature of Swift is its ability to selectively replicate
computation onto both the client and server, improving both re-
sponsiveness and security. For example, validation of form inputs
should happen on the client so the user does not have to wait for
the server to respond when invalid inputs are provided. However,
client-side validation should not be trusted, so input validation must
also be done on the server. In current practice, developers write
separate validation code for the client and server, using different
languages. This duplicates effort and makes it less likely that val-
idation is done correctly and consistently. With Swift, the com-
piler can automatically replicate the same validation code onto both
the server and the client. This replication is not a special-purpose
mechanism; it is simply a result of applying a general-purpose al-
gorithm for optimizing code placement.

In the next few sections, we more closely examine the various
compilation phases illustrated in Figure 1.

3. Writing Swift applications

3.1 Labels and principals
Programming with Swift starts with a program written in the Jif

programming language [14, 16], with a few extensions. A little
background on Jif will therefore be helpful.

Information security requirements are expressed in Jif programs
using labels from the decentralized label model (DLM) [15]. A
label is a set of policies. For example, the confidentiality policy
alice�bob says that principal alice owns the labeled informa-
tion but permits principal bob to read it. Similarly, the integrity pol-
icy alice�bob means that alice permits bob to affect the labeled
information. Because labels express security requirements explic-
itly in terms of principals, and keep track of whose security is being
enforced, they are useful for systems where principals need to co-
operate despite mutual distrust. Web applications are examples of
such systems.

Labels can be attached to types, making Jif a security-typed lan-
guage [26]. For example, the following declaration uses a label
containing two policies separated by a semicolon:

int {alice�bob,alice; bob�alice} y;

It means that the information in y is considered sensitive by alice,
who considers that it can be released securely only to bob and
alice; and further that it is considered trustworthy by bob, who
believes that only alice should be allowed to affect it.

The Jif compiler uses labels to statically check that information
flows within Jif code are secure. For example, consider the follow-
ing code fragment (using the same variable y):

int {bob�bob} x;

int {alice�bob; bob�alice} z;

if (x == 0)

z = y;

This code causes an explicit information flow from y to z. For the
code to be secure, the label on z must restrict the use of data in z

as least as much as the label on y restricts the use of y. This is true
if (1) for every confidentiality policy on y, there is one at least as
restrictive on z (which is the case because alice�bob is at least as
restrictive as alice�bob,alice) and (2) for every integrity policy
on z, there is one at least as restrictive on y (which is the case
because z has no integrity policy; the integrity of y (bob�alice)
is extra.

More subtly, the code also causes an implicit information flow
from x to z, because inspecting z after the code runs may impart
information about x, even if the assignment from y never happens.
Implicit flows are important. A failure to control this implicit flow
would mean that an attacker could violate confidentiality by im-
properly learning about the value of z, or could violate integrity by
changing z and improperly affecting the control flow of the pro-
gram. Compared to purely dynamic taint tracking mechanisms, a
static analysis of information flow can detect implicit flows with
greater precision [6]. This precision is necessary for the applica-
tions described later in this paper.

Applying the above rule, the implicit flow from x to z is secure
if alice�bob is at least as restrictive as bob�bob. In general,
this condition does not hold, because the second policy is owned
by bob, who would not trust any enforcement of the second policy
on behalf of its owner (alice). However, the implicit flow would
be secure if alice acts for bob, meaning that bob trusts alice

completely, and as a result, alice�bob is at least as restrictive
as bob�bob. Acts-for relationships increase the expressive power
of labels and allow static information flow checking to work even
though trust relationships change over time.

Two principals are already built into Swift programs. The prin-
cipal * (also server) represents the maximally trusted principal in
the system. The principal client represents the other end of the
current session—in ordinary, non-malicious use, a web browser un-
der the control of a user. When reasoning about security, we can
only assume that the client is the other end of a network connection,
possibly controlled by a malicious attacker. Because the server is
trusted, the principal * acts for client. The client may see in-
formation whose confidentiality is no greater than *→client, and
can produce information with integrity no greater than *�client.

A Swift program may use and even create additional principals,
for example to represent different users of a web application. For a
user to log in as principal bob, server-side application code trusted
by bob must establish that the principal named by client acts for
bob. Applications can define their own authentication methods for
this purpose. Once the relationship exists, the client can act for bob;
for example, information labeled alice�bob could be released to
that client.

There are actually multiple principals denoted by client, whose
identity is determined by which client initiated the current request.
To prevent different session principals named as client in the
code from being confused with each other, the Swift compiler re-
quires that the types of static variables not reference the princi-
pal client, even indirectly. This works because different Swift
sessions can only interact or access shared persistent state through
static variables.

3.2 A sample application
The key features of the Swift programming model can be seen

by studying a simple web application written using Swift. Figure 2
shows key fragments of the Jif source code of the number-guessing
web application described in Section 1. Java programmers will rec-
ognize this code as similar to that of an ordinary single-machine
Java application that uses a UI library such as Swing [23]. For ex-
ample, it has a user interface dynamically constructed out of wid-
gets such as buttons, text inputs, and text labels. Swift widgets are
similar to those in the Google Web Toolkit [9], communicating via
events and listeners. The crucial difference is that Swift controls
how information flows through them.

The core application logic is found in the makeGuess method
(lines 15–39). Aside from various security label annotations, this
method is essentially straight-line Java code. To implement the
same functionality with technologies such as JSP [1] or GWT re-
quires more code, in a less natural programming style with explicit
control transfers between the client and server.

The code contains various labels expressing security require-
ments. Because this example is very simple, just the principals
client and * are used in these labels. For example, on line 3,
the variable secret is declared to be completely secret (*�*) and
completely trusted (*�*); the variable tries on the next line is
not secret (*�client) but is just as trusted. Because Jif checks
transitively how information flows within the application, the act
of writing just these two label annotations constrains many of the
other label annotations in the program. The compiler ensures that
all label annotations are consistent with the information flows in
the program.

The user submits a guess by clicking the button. A listener at-
tached to the button passes the guess (line 50) to makeGuess. The
listener reads the guess from a NumberTextBox widget that only
allows numbers to be entered.

The makeGuess method receives a guess num from the client.
The variable num is untrusted and not secret, as indicated by its
label {*�client} on line 15. The label after the name of the

1 public class GuessANumber {
2 final label{*�*} cl = new label{*�client};
3 int{*�*; *�*} secret;
4 int{*�client; *�*} tries;
5 ...
6 private void setupUI{*�client}() {
7 guessbox = new NumberTextBox[cl, cl]("");
8 message = new Text[cl, cl]("");
9 button = new Button[cl, cl]("Guess");
10 ...
11 rootpanel.addChild(cl, cl, guessbox);
12 rootpanel.addChild(cl, cl, button);
13 rootpanel.addChild(cl, cl, message);
14 }
15 void makeGuess{*�client}(Integer{*�client} num)
16 where authority(*), endorse({*�*})
17 throws NullPointerException
18 {
19 int i = 0;
20 if (num != null) i = num.intValue();
21 endorse (i, {*�client} to {*�*})
22 if (i >= 1 && i <= 10) {
23 if (tries > 0 && i == secret) {
24 declassify ({*�*} to {*�client}) {
25 tries = 0;
26 finishApp("You win!");
27 }
28 } else {
29 declassify ({*�*} to {*�client}) {
30 tries--;
31 if (tries > 0) message.setText("Try again");
32 else finishApp("Game over");
33 }
34 }
35 } else {
36 message.setText("Out of range:" + i);
37 }
38 }
39 }
40 class GuessListener
41 implements ClickListener[{*�client}, {*�client}] {
42 ...
43 public void onClick{*�client} (
44 Widget[{*�client}, {*�client}]{*�client} w)
45 :{*�client} {
46 if (guessApp != null) {
47 NumberTextBox[cl, cl]{*�client} guessbox =
48 guessApp.guessbox;
49 if (guessbox != null)
50 guessApp.makeGuess(guessbox.getNumber());
51 }
52 }
53 }

Figure 2: Guess-a-Number web application

method, also {*�client}, is the begin label of the method. It
bounds what might be learned from the fact that the method was
invoked, by preventing callers from causing any greater implicit
flow. Jif also keeps track of implicit flows out of methods using
end labels; in the case of makeGuess, no additional annotations are
required for this purpose because the end label is the same as the
begin label. Jif aims to protect the confidentiality and integrity of
program data rather than of program code. However, end labels and
begin labels can be used to respectively protect the confidentiality
and integrity of code.

The code of makeGuess checks whether the guess is correct,
and either informs the user that he has won, or else decrements
the remaining allowed guesses and repeats. Because the guess is
untrusted, Jif will prevent it from affecting trusted variables such
as tries, unless it is explicitly endorsed by trusted code. There-
fore, lines 21–37 have a checked endorsement that succeeds only
if num contains an integer between one and ten. If the check suc-
ceeds, the number i is treated as a high-integrity value within the
“then” clause. If the check fails, the value of i is not endorsed, and

1 class Widget[label Out, label In] { ... }
2 class Panel[label Out, label In]
3 extends Widget[Out,In] {
4 void addChild{Out}(label wOut,
5 label wIn,
6 Widget[wOut,wIn]{Out} w)
7 where {*wOut} <= Out, {In;w} <= {*wIn};
8 }
9 class ClickableWidget[label Out, label In]
10 extends Widget[Out,In] {
11 void addListener{In}
12 (ClickListener[Out,In]{In} li);
13 }
14 class Button[label Out, label In]
15 extends ClickableWidget[Out,In] {
16 String{Out} getText();
17 void setText{Out}(String{Out} text);
18 }
19 interface ClickListener[label Out, label In] {
20 void onClick{In}(Widget[Out, In]{In} b);
21 }

Figure 3: UI framework signatures

the “else” clause is executed. Checked endorsements are a Swift-
specific Jif extension that makes the common pattern of validating
untrusted inputs both explicit and convenient.

By forcing the programmer to use endorse, the potential secu-
rity vulnerability is made explicit. In this case, the endorsement of
i is reasonable because it is intrinsically part of the game that the
client is allowed to pick any value it wants (as long as it is between
one and ten).

Similarly, some information about the secret value secret is re-
leased when the client is notified whether the guess i is equal to
secret. Therefore, the bodies of both the consequent and the al-
ternative of the if test on line 23 must use an explicit declassify
to indicate that information transmitted by the control flow of the
program may be released to the client. Without the declassify,
client-visible events—showing messages, or updating the variable
tries—would be rejected by the compiler.

The declassify and endorse operations are inherently dan-
gerous. Jif controls the use of declassify and endorse by requir-
ing that they occur in a code marked as trusted by the affected prin-
cipals; hence the clauses authority(*) and endorse({*�*})

on line 16. The latter, auto-endorse annotation means that an in-
vocation of makeGuess is treated as trusted even if it comes from
the client. Jif also enforces a security property of robust declassi-
fication [2], in which declassification cannot be performed without
sufficient integrity. Untrusted information is not allowed to affect
security-critical operations such as declassification, even indirectly.

3.3 Swift user interface framework
Swift programs interact with the user via a user interface frame-

work. This framework abstracts away the details of the underly-
ing HTML and JavaScript, allowing programming in a event-driven
style familiar to users of UI frameworks such as Swing. The con-
trol of information flow in a rich, interactive, dynamically changing
graphical user interface is a novel feature of Swift.

Figure 3 presents part of the signatures of several Swift UI frame-
work classes. The class Widget is the ancestor of all user inter-
face widgets, such as TextBox (which allows a user to enter text),
Button (which represents a clickable button), and Panel (which
contains other widgets).

All classes in the framework are annotated with security policies
that track information flow that may occur within the framework.

The framework ensures that the client is permitted to view all infor-
mation that the user interface displays. Conversely, all information
received from the user interface is annotated as having been tainted
by the client.

The user interface classes demonstrate an important feature of
Jif. Classes may be parameterized with respect to principals or la-
bels, as indicated by the parameters in brackets following the name
of each class. The Jif parameterization mechanism is superficially
similar to the parameterized type mechanism in recent versions of
Java, but differs in that parameter values are usable at run time.

All widget classes are parameterized on two security labels, Out
and In. The parameter Out is an upper bound on the security labels
of information that is contained in the widget, or its children. Thus,
given labels ` and `′, the text displayed on a Button[`,`′] object
must have a security label no more restrictive than `. This restric-
tion is evidenced by the annotations on the getText and setText

methods, on lines 16–17. Similarly, given a Panel[`,`′] object
to which we are adding a child Widget[`w,`

′
w] w, the label of

the child’s contents, `w, must be no more restrictive than the upper
bound of the panel’s content, `. This requirement is expressed in the
annotation “where {*wOut} <= Out” on the addChild method
(line 7). This annotation means that the method can be called only
if it is known at the call site that the label contained in the variable
wOut is no more restrictive than the label Out. (Because wOut is a
program variable, unlike Out, the label in wOut is written {*wOut}

to distinguish it from the label of wOut, written {wOut}.)
The parameter In of a widget is an upper bound on informa-

tion that may be gained by knowing an event occurred on the wid-
get. Thus, if a ButtonListener[`,`′] is added as a listener to a
Button[`,`′] object, `′ is an upper bound on information that the
listener may learn by having the onClick method invoked. This is
shown by the occurrences of the label {In} in the addListener

and onClick method signatures on lines 12 and 20. For example,
the first {In} in the onClick signature means that the method can
be called only if the implicit information flow into the method is
bounded above by In.

What information do we learn by knowing an event occurs on
a widget? We can at least infer that the widget is displayed to the
user, and thus that the widget is reachable from the root panel. For
example, suppose an application creates button bt if the value of
a secret boolean v is true, and button bf if the value is false;
a listener to bt can then infer the value of v upon invocation of
the onClick method. Thus, the In parameter for bt must be at
least as restrictive as the security label for the boolean v. More
generally, if a Widget[`w,`

′
w] w is added to a Panel[`,`′] p,

the security label `′w must be at least as restrictive as the security
label of widget w. In addition, since an event on w can only occur
if the panel p is itself added to the UI, we also require that `′w is at
least as restrictive as `′. Both of these restrictions are expressed in
the annotation “where {In;w} <= {*wIn}”, on line 7.

4. WebIL
After the Swift compiler has checked information flows in the

Jif program, the program is translated to the intermediate language
WebIL. WebIL extends Java with placement annotations for both
code and data. Placement annotations define constraints on where
code and data may be replicated. These constraints may be due to
security restrictions derived from the Jif code, or to architectural re-
strictions (for example, calls to a database must occur on the server,
and calls to the UI must occur on the client).

Whereas Jif allows expression and enforcement of rich security
policies from the decentralized label model (DLM) [15], the WebIL
language is concerned only with the placement of code and data

1 auto void makeGuess(Integer num) {
2 C?S?: int i = 0;
3 C?S?: if (num != null)
4 C?S?: i = num.intValue();
5 C?Sh: boolean b1 = (i >= 1);
6 boolean b2;
7 C?Sh: if (b1) b2 = (i <= 10); else b2 = false;
8 C?Sh: if (b2) {
9 Sh: boolean c1 = (tries > 0);
10 boolean c2;
11 Sh: if (c1) c2 = (i == secret);
12 Sh: else c2 = false;
13 Sh: if (c2) {
14 C?Sh: tries = 0;
15 C?S?: finishApp("You win!");
16 } else {
17 C?Sh: tries--;
18 C?S?: if (tries > 0) {
19 C : message.setText("Try again");
20 } else {
21 C?S?: finishApp("Game over");
22 }
23 }
24 } else {
25 C : message.setText("Out of range:"+i);
26 }
27 }

Figure 4: Guess-a-Number web application in WebIL

onto two host machines, the server and the client. Thus, when trans-
lating to WebIL, the compiler projects annotations from the rich
space of DLM security policies down to the much smaller space of
placement constraints.

Using the placement constraint annotations, the compiler chooses
a partitioning of the WebIL code. A partitioning is an assignment of
every statement and field to a host machine or machines on which
the statement will execute, or the field be replicated. To optimize
performance, partitioning uses an efficient algorithm based on a re-
duction to the maximum flow problem. A novel feature of WebIL
is that code or data may be replicated in order to improve the per-
formance of the application. The partitioned code is then translated
into two Java programs, one to run on the server, and the other to
run on the client.

WebIL can be used as a source language in its own right, allow-
ing programmers to develop web applications in a Java-like pro-
gramming language with GUI support, while mostly ignoring is-
sues of code and data placement, and client-server coordination.
This approach has many benefits over traditional web application
programming, but lacks the full security benefits of Swift.

4.1 Placement annotations
Each statement and field declaration in WebIL is preceded im-

mediately by one of nine possible placement annotations, shown
in Table 1: C, S, Sh, C?Sh, C?S?, CS, CS?, C?S, and CSh. Each
placement annotation defines the possible placements for the field
or statement, as shown in the table. There are three possible place-
ments: client, server, and both. The intuition is that C and S mean
the statement or field must be placed on the client and server respec-
tively, whereas C? and S? mean it is optional. An h signifies high
integrity. Figure 4 shows the result of translating Guess-a-Number
into WebIL, including placement constraints.

The placement of a field declaration indicates onto which host or
hosts the data stored in the field is replicated. For example, if a field
has the placement server, that field is stored only on the server; if
it has the placement both, it is replicated on both client and server.

Possible High
Annotation placements integrity
C {client} N
S {server} N
Sh {server} Y
CS {both} N
CSh {both} Y
CS? {client, both} N
C?S {server, both} N
C?Sh {server, both} Y
C?S? {client, server, both} N

Table 1: WebIL placement constraint annotations

The placement of a statement indicates onto which host or hosts
the computation of the statement is replicated. For compound state-
ments such as conditionals and loops, the placement indicates the
hosts for evaluating the test expression. On line 11 of Figure 4, the
comparison of the guess to the secret number is given the annota-
tion Sh, meaning that it must occur only on the server. Intuitively,
this is the expected placement: the secret number cannot be sent to
the client, so the comparison must occur on the server. On line 3,
the annotation C?S? indicates that there is no constraint on where
to test that num is non-null; that test may occur on the client, on the
server, or on both.

For a statement that must execute on the server, the annotation
may indicate that it is high-integrity. The annotations Sh, C?Sh
and CSh denote high-integrity code. When translating to WebIL
code, the Swift compiler will mark a statement as high-integrity if
its execution may affect data that the client should not be able to
influence. Thus, the client’s ability to initiate execution of high-
integrity statements must be restricted. As discussed in Section 5,
run-time mechanisms prevent this.

Lines 5–14 of Figure 4 are annotated as high-integrity because
the execution of these statements may alter or influence the values
of the high-integrity variables tries, b1, b2, c1, and c2. Note
that the start of the high-integrity statements, line 5, corresponds
to the start of the endorse statement of the original Jif program
of Figure 2; it is due to this endorsement that the temporary local
variables b1, b2, c1, and c2 are regarded as high-integrity, and they
therefore need to be protected from malicious clients. Note that the
ability of the client to cause execution of these high-integrity state-
ments comes from the endorse annotation at line 16 in the source,
reflected in the WebIL code by the auto annotation on makeGuess.

4.2 Translation from Jif to WebIL
When the compiler translates from Jif to WebIL code, it replaces

DLM security policies with corresponding placement constraint an-
notations, and translates Jif-specific language constructs into Java
code. Based on the security policies of the Jif code, the compiler
chooses annotations that ensure code and data are placed on the
client only if the security of the program will not be violated by a
malicious client.

In particular, the translation ensures that data may be placed on a
client only if the security policies indicate that the data may be read
by the principal client; data may originate from the client only if
the security policies indicate that the data is permitted to be written
by the principal client. Similar restrictions apply to code: code
may execute on the client only if the execution of the code reveals
only information that the principal client may learn; the result of
a computation on the client can be used on the server only if the

security policies indicate that the computation result is permitted to
be written by the principal client.

The translation to WebIL also translates Jif-specific language
features. Uses of the primitive Jif type label are translated to uses
of a class jif.lang.Label. Declassifications and endorsements
are removed, as they have no effect on the run-time behavior of the
program. However, they do affect the labels of code and expres-
sions, and therefore affect their placement annotations.

WebIL code is annotated at statement granularity. To allow fine-
grained control over the placement of code, compound expressions
are translated into a sequence of simple expressions whose results
are stored in temporary local variables. Thus, subexpressions of the
same source code expression may be computed on different hosts.

4.3 Goals and constraints
The compiler decides the partitioning by choosing a placement

for every field and statement of the WebIL program. Placements
are chosen to satisfy both the placement constraints and also certain
consistency requirements. Once placements are chosen, the WebIL
program is split into two communicating programs, one running on
the client, and the other running on the server. The goal of choos-
ing placements is to optimize overall performance without harm-
ing security. Since network latency is typically the most significant
component of web application run time, fields and statements are
placed in order to minimize latency arising from messages sent be-
tween the client and server. For example, it is desirable to give
consecutive statements the same placement.

Replicating computation can also reduce the number of mes-
sages. Consider lines 5–8 of the Guess-a-Number application in
Figure 4, which check that the user’s input i is between 1 and 10
inclusive. To securely check that the client provides valid input,
these statements must execute on the server. If the value entered by
the user is not in the valid range, the server sends a message to the
client to execute line 25, informing the user of the error. However,
if lines 5–8 execute on both the client and server, no server–client
message is needed, and the user interface is more responsive.

The placements of a field and of a statement that accesses the
field must be consistent. In particular, if a statement writes to a
field, then the statement and the field must have the same place-
ment; if a statement reads a field, then the statement must be repli-
cated on a subset of the hosts that the field is replicated on. These
consistency requirements simplify the treatment of field accesses in
the run-time system, ensuring that every replicated copy of a field
is updated correctly, and that every read from a field occurs on a
host on which the field is present. These requirements do not re-
duce the expressiveness of WebIL. Fields can be partitioned from
their uses because a simple program transformation rewrites every
field access as an assignment to or from a temporary local variable.

Figure 5 shows the GuessANumber.makeGuess method after
partitioning. A placement has been chosen for each statement. The
field tries has been replicated on both client and server, requiring
all assignments to it to occur on both hosts (lines 14 and 17). Also,
the compiler has replicated on both client and server the validation
code to check that the user’s guess is between 1 and 10 (lines 2–8).
The validation code must be on the server for security, but placing
it on the client allows the user to be informed of errors (on line 25)
without waiting for a server response.

4.4 Partitioning algorithm
The compiler chooses placements for statements and fields in

two stages. First, it constructs a weighted directed graph that ap-
proximates the control flow of the whole program. Each node in
the graph is a statement, and weights on the graph edges are static

1 auto void makeGuess(Integer num) {
2 CS : int i = 0;
3 CS : if (num != null)
4 CS : i = num.intValue();
5 CSh: boolean b1 = (i >= 1);
6 boolean b2;
7 CSh: if (b1) b2 = (i <= 10); else b2 = false;
8 CSh: if (b2) {
9 Sh: boolean c1 = (tries > 0);
10 boolean c2;
11 Sh: if (c1) c2 = (i == secret);
12 Sh: else c2 = false;
13 Sh: if (c2) {
14 CSh: tries = 0;
15 S : finishApp("You win!");
16 } else {
17 CSh: tries--;
18 CS : if (tries > 0) {
19 C : message.setText("Try again");
20 } else {
21 S : finishApp("Game over");
22 }
23 }
24 } else {
25 C : message.setText("Out of range: "+i);
26 }
27 }

Figure 5: Guess-a-Number after partitioning

approximations of the frequency of execution following that edge.
Second, the weighted directed graph and the annotations of the
statements and field declarations are used to construct an instance
of an integer programming problem, which is then reduced to an
instance of the maximum flow problem. The solution for the inte-
ger programming problem directly yields the placements for fields
and statements.

Control-flow graph.
For each method in the program, a control-flow graph (CFG)

is constructed, and, assuming that the method is invoked n times,
non-negative, real weights are assigned to edges in the method’s
CFG. Edge weights are multipliers of n, representing how often
that edge is taken. To estimate n, each branch of an if statement
is assumed to be taken the same number of times, and each loop
is assumed to execute ten times before it exits. Exceptions, break
and continue statements, and method calls are ignored.

An interprocedural analysis is then performed to construct a call
graph of the whole program. For dynamically dispatched meth-
ods, the analysis conservatively finds all possible method bodies
that may be invoked. Recursive methods are ignored, so the re-
sulting call graph is acyclic. The application’s main method and
each UI event handler is assumed to be called exactly once, and the
weights are propagated through the call graph using each method’s
CFG with edge weights. At method calls, every possible target is
assumed to be invoked the same number of times. The result of
the construction is a control flow graph of the entire program, with
edge weights that approximate how often the edge is followed.

Integer programming problem.
Using the weighted directed graph and placement constraint an-

notations on field declarations and statements, the placement prob-
lem is expressed as an instance of an integer programming (IP)
problem. A solution to the problem assigns all variables in the
problem a value in {0, 1}. Each statement u is associated with two

variables, su and cu. The variable su is 1 if the statement u is repli-
cated on the server, and cu is 1 if u is replicated on the client. For
each u, the constraint su +cu ≥ 1 ensures that every statement has
to be replicated somewhere. Also, linear constraints are used to en-
sure consistency in the annotations between statements that access
the same field.

For each edge e = (u, v) in the weighted directed graph, two
variables xe and ye are used. The variable xe is 1 if a message
is sent from the client to the server when program execution transi-
tions from statement u to statement v. This occurs when v executes
on the server, but u does not, and therefore there is a constraint
xe ≥ sv − su. Similarly, ye is 1 if a message is sent from the
server to the client when program execution transitions on edge e;
therefore, there is a constraint ye ≥ cv − cu.

Let we be the weight of edge e. The goal is to find an assignment
to all variables that satisfies all constraints, and minimizes the cost
of the messages sent. This cost is

P
e we(xe + ye).

Although integer programming problems are in general NP-com-
plete, this particular problem has the nice property that its linear
relaxation (obtained by replacing the constraint sv, cv, xe, ye ∈
{0, 1} with sv, cv, xe, ye ≥ 0) always has an integral optimal so-
lution. Therefore, placement is polynomial-time solvable, because
an integral optimal solution to the linear relaxation is an optimal
solution to the IP problem, and linear programming problems are
polynomial-time solvable.

An efficient algorithm for the placement problem is designed by
reducing the integer programming problem to an instance of the
maximum flow problem. The key to the algorithm is the construc-
tion of the flow graph H on which maximum flow is computed.
It is constructed from the weighted directed graph G that approx-
imates the control flow. Using the preflow-push method [5], the
algorithm runs in O(V 3), where V is the number of statements.
The algorithm also implements the gap heuristic [7], and achieves
a satisfactory performance for compiling the test cases in the paper.

The graph H is constructed from the graph G as follows. First,
create G′, which is a copy of G, with all edges reversed, i.e., for
each edge e = (u, v) ∈ G, there is an edge (v′, u′) with weight
we in G′. All nodes and edges of G and G′ are in H . For each
node u in G with corresponding node u′ in G′, add an edge (u, u′)
to H with infinite weight. Add two distinguished nodes to H , ts

and tc, representing the server side and the client side respectively.
Finally, add edges with infinite weights for every statement u that
has a known placement: if u is only on the server, add an edge
(ts, u); if it is only on the client, add an edge (u′, tc); if it is on
both sides, add two edges (ts, u

′) and (u, tc).
According to the max-flow min-cut theorem [5], there is a maxi-

mum flow from ts to tc on H , and a minimum cut (S, C), where S
and C are two disjoint sets that cover all nodes in H , and ts ∈ S,
tc ∈ C; the cost of the maximum flow equals that of the minimum
cut, and it gives the optimal solution s∗u, c∗u, x∗

e , y∗
e to the integer

programming problem:

s∗u =

1 u′ ∈ S
0 otherwise c∗u =

1 u ∈ C
0 otherwise

x∗
(u,v) = max{0, s∗v − s∗u}

y∗
(u,v) = max{0, c∗v − c∗u}

The above solution is legal, because it disallows s∗u = c∗u = 0:
if that were the case, it would imply that u ∈ S and u′ ∈ C, which
is impossible as (u, u′) has an infinite weight.

Of course, the accuracy of this approach is limited by how closely
the weighted directed graph approximates actual run-time behav-
ior. More sophisticated static analysis techniques or profiling data

1 // auto void makeGuess(Integer num)
2 block1: (CS)
3 int i = 0;
4 if (num != null) i = num.intValue();
5 goto block2;
6 block2: (CSh)
7 boolean b1 = (i >= 1);
8 boolean b2;
9 if (b1) b2 = (i <= 10); else b2 = false;
10 if (b2) goto block3; else goto block10;
11 block3: (Sh)
12 boolean c1 = (tries > 0);
13 boolean c2;
14 if (c1) c2 = (i == secret); else c2 = false;
15 if (c2) goto block4; else goto block6;
16 ...
17 block10: (C)
18 call message.setText("Out of range: "+i);

Figure 6: Guess-a-Number execution blocks

could yield more precise weighted directed graphs. However, in
practice the current placements appear to be good.

5. The Swift runtime
From a partitioning of a WebIL program, the Swift compiler pro-

duces two Java programs. One executes on the server, and the other
on the client (after translation to JavaScript). Concurrent execution
of these two programs simulates execution of the original Jif pro-
gram while enforcing its security requirements.

Both programs rely on Swift’s run-time support, which manages
communication and synchronization. The client and the server have
separate run-time systems, which are similar but not identical, since
the trust model is asymmetric. The client’s run-time system trusts
all messages from the server, but the server does not trust any mes-
sages from the client.

This section describes the Swift run-time support and shows how
WebIL code is translated into Java. It also explains how GWT is
used to compile client-side code into JavaScript.

5.1 Execution blocks and closures
Methods in WebIL are divided into units called execution blocks,

which are contiguous segments of code with the same placement
annotation. Execution blocks have a single entry point and one
or more exit points. Each execution block has a unique identifier.
For example, Figure 6 shows the execution blocks of the Guess-a-
Number makeGuess method, in which blocks block2 and block3

have two exit points and the other blocks have just one. In general,
an execution block contains more than one basic block; a simple
dataflow analysis finds execution blocks of maximal size.

Figure 7 shows the WebIL code for a more complex example,
comprising two methods of a web application “Treasure Hunt.”
This game has a grid of cells, some of which contain bombs and
others, treasure. The user explores the grid by digging in cells, ex-
posing their contents. In the figure, different execution blocks in
the code are shown separately boxed and numbered.

Execution blocks are executed sequentially, following branches
from each block to the next. Suppose a branch is taken from execu-
tion block s to execution block t. If t is to run on a host that did not
run s, the other host invokes it by sending a message containing the
identifier of t. We call this a control transfer message, although the
original host may also continue executing t. If s is placed on both
hosts, no message need be sent.

Server stackClient stack

BadCell handler

Execution block=5

BadCell handler

Execution block=5

TreasureHunt.hit activation record

Grid.getTreasure activation record

Client Server

Client Server

i

evt

j

points

x

y

contents

Exception
handler
closure

Execution block=3

current

activation record

Return
closure

Exception
handler
closure

current

activation record

. . .

Program point 1

Program point 2

Figure 8: Run-time state at program points 1 (black) and 2 (gray) in Figure 7

Activation records.
An execution block runs in the context of an activation record,

which stores the state of local variables, including method argu-
ments. For a given activation record, the client and server have dis-
tinct views that share the same unique activation record identifier.
Each host’s view stores only the variables used on that host.

Hosts can forward local variable values to each other, to update
the other host’s view of the activation record. Activation record up-
dates are piggybacked onto control transfer messages. Importantly
for security, there are restrictions on which variables will be sent
and received in activation record updates: the server will only for-
ward variables that the client is permitted to read, and only accept
updates for variables the client is permitted to write.

Figure 8 shows the state of the run-time system on the client and
server during execution of the Treasure Hunt code. The activation
record for the method TreasureHunt.hit has variables evt, i, j,
and points. All of these variables are in the client view, but the
server view does not contain evt, as the server never needs to use
that variable. Also, since the variable points is high-integrity, the
server never accepts updates to it from the client.

Closures.
When one host invokes an execution block on the other, it sup-

plies both the identifier of the next execution block and the iden-
tifier for the appropriate activation record. This pair of identifiers
forms a closure, a self-contained executable unit.

The client and server run-time systems each maintain a stack of
closures, which serves two purposes: to correctly simulate the exe-
cution of method calls and exceptions, and to enforce the integrity
of control flow. The use of the closure stack for control-flow in-
tegrity is discussed further in Section 5.2. The closure stacks of the
client and server are synchronized by piggybacking stack updates
onto control transfer messages.

For method calls and exceptions, two kinds of closures are kept
on the stack: return closures and exception handler closures. A
return closure is pushed onto the stack when a method is called, and
popped and invoked when it returns. Exception handler closures are
pushed on entry to try...catch blocks, and popped on exit. They
are invoked if a matching exception is thrown within the block.

Closure results.
When a closure s runs, it produces a result that identifies the

closure t to run next. There are four kinds of results: simple results,

exception results, method call results, and method return results. A
simple result identifies a closure t within the same method as the
closure s that returned it, in which case s and t share the same
activation record. The run-time system simply invokes t, sending a
control transfer message to the other host if needed.

A method call result means that a method is to be invoked next.
This result identifies the execution block of the appropriate method
body, the receiver object, a new activation record containing the
method arguments, and a return closure. The run-time system pushes
the return closure onto the stack, makes the new activation record
the current one, and transfers control.

Method return results and exception results indicate, respectively,
a return from the current method and the throwing of an exception.
When a closure returns a method return or exception result, the run-
time system walks up the closure stack, popping off closures, until
it finds an appropriate return closure or exception handler closure.
Once found, the run-time system invokes the appropriate closure,
passing it the return value or exception object as appropriate.

Example.
Figure 8 shows the state of the client and server closure stacks

at program points 1 and 2 of Figure 7. Figure elements in black
are present at program point 1, and elements in gray are added by
program point 2.

At program point 1, the client has finished execution of execution
block 1. The try statement of line 10 has just been entered, and the
client has pushed an exception handler closure onto its stack. The
handler has three fields: the type of exception it handles (BadCell),
the execution block identifier, and the activation record identifier of
the current call to TreasureHunt.hit. If a BadCell exception is
thrown within the try...catch block, the run-time system walks
up the stack, finds the handler closure, and invokes it.

At program point 1, the client is just about to return a simple re-
sult requesting the invocation of execution block 2. This results in
the sending of a control transfer message to the server. Along with
the control transfer message, the client sends an activation record
update (for the values of variables i and j) and a stack update (in-
forming the server of the BadCell exception handler closure). The
server runs execution block 2, which returns a method call result.
This causes the return closure for the caller (TreasureHunt.hit)
to be pushed onto the server’s closure stack, a new activation record
to be created for Grid.getTreasure, and start the execution of the
Grid.getTreasure method.

g1
g2g3 g4
g5g6

g7

g8
g9i10

1 public class TreasureHunt {
2 :S: Grid grid;
3 :Sh: int totalPoints;
4 :C: TextBox message;
5 :C: Table gridDisplay;
6 ...
7 auto void hit(GridEvent evt) {
8 :C: int i = evt.X;
9 :C: int j = evt.Y;
10 :C: try {

program point 1������)
11 :S: int points = grid.getTreasure(i, j);
12 :C: gridDisplay.setWidget(i, j, new Text(points));
13 } catch (BadCell e) {
14 :C: message.displayError("Invalid Cell");
15 }
16 :C: return;
17 }
18 ...
19 }
20 class Grid {
21 :S: int grid[][];
22 :S: int XBOUND, YBOUND;
23 ...
24 int getTreasure(int x, int y)
25 throws BadCell {

program point 2������)
26 :S: boolean bound = x < 0 || y < 0 ||
27 x > XBOUND || y > YBOUND;
28 :S: boolean open = isOpened(x,y);
29 :S: boolean condition = bound || open;
30 :S: if(condition) {
31 :S: throw new BadCell();
32 }
33 :S: int contents = grid[i][j];
34 :Sh: totalPoints += contents;
35 :Sh: open(x,y);
36 :S: return contents;
37 }
38 ...
39 }

Figure 7: Part of the Treasure Hunt application, in WebIL

At program point 2, the Grid.getTreasure method has just
begun executing, in execution block 7. The return closure for the
caller is on the top of the stack. The return closure contains the
closure to execute when the method call returns: execution block
3, and the activation record for the latest invocation of hit. The
current activation record at program point 2 is the activation record
for Grid.getTreasure.

5.2 Integrity of control flow
A high-integrity closure is one whose execution block has high-

integrity side effects, and is therefore annotated Sh or CSh. A
misbehaving client might try to send a control transfer message
specifying a high-integrity execution block, and thereby compro-
mise the integrity of variables affected by that execution block. A
simple-minded approach would be to prevent the client from invok-
ing high-integrity closures. However, in some situations, the client
must legitimately invoke a high-integrity closure on the server. Con-
sider the following WebIL code, after partitioning:

1 Sh: this.f = 7;
2 C : this.g = 8;
3 Sh: m(this.f);

Lines 1 and 3 are both server-only high-integrity execution blocks,
but line 2 must execute on the client. Here, correct control flow of
the program requires the client to invoke the high-integrity server
closure for line 3.

The server pushes high-integrity closures onto the closure stack,
to give the client a controlled way to execute high-integrity clo-
sures. A client may invoke a high-integrity closure only if it is at
the top of the closure stack. For example, the execution of line
1 pushes a closure for line 3 onto the closure stack, which allows
the client execution block at line 2 to invoke line 3, but no other
high-integrity closure. Further, a client cannot pop a high-integrity
closure without executing it. The server checks that control trans-
fer messages and stack updates received from the client obey these
rules. As a result, a misbehaving client cannot control the execution
of high-integrity closures, even if it throws arbitrary exceptions and
invokes arbitrary closures on the server.

A dataflow analysis is used to statically determine when high-
integrity closures should be pushed onto the closure stack. When
control flow may pass from a low-integrity execution block u to a
high-integrity execution block t, the analysis finds the high-integrity
execution blocks s that immediately precedes the low-integrity ex-
ecution leading to u. The execution of s then pushes the closure
for t onto the closure stack. Because the WebIL code was gener-
ated from a Jif program with secure information flows, a suitable
execution block s exists for each such u and t.

5.3 Classes and objects
A Jif class C is translated into two Java classes: Cs, for use

by the server program, and Cc, for the client. For each field f of
class C, the placement of f determines whether the field declara-
tion should be placed in Cs or Cc (or both). Each object has a
unique identifier. An object o of class C is represented by a pair of
objects os and oc that share the same identifier, where os of class
Cs is on the server, and oc of class Cc is on the client.

When an object reference is sent from one machine to the other
(for example, when forwarding the value of a local variable), it suf-
fices to send the object identifier. If the receiving machine is not
aware of the object identifier, a heap update is also sent, informing
the receiving machine of the run-time class of the object; the receiv-
ing machine’s run-time system creates an object of the appropriate
class, with the specified object identifier.

Label checking on the original Jif source program ensures that
heap updates do not violate confidentiality of information: if the
server needs to send a heap update to the client for a particular
object, then the client is permitted to know about the existence of
that object. Conversely, before applying a heap update received
from the client, the server checks it for consistency; for example, it
checks uniqueness of the object identifier. Object fields are never
read before initialization.

5.4 Other security considerations
The fact that WebIL programs are generated from Jif programs

with secure information flows is important to ensuring translated
code is secure. For example, the client does not learn any secret
information by knowing which closures the server requests it to
execute. Static checking of the Jif program prevents these implicit
flows. Similarly, stack updates, activation record updates and heap
updates do not leak information covertly.

Care must also be taken in the run-time system to ensure that no
new information channels are introduced by the code translation.
For example, the unique identifiers used for activation records and
objects form a potential information channel. If identifiers followed
a predictable sequence, and confidential information affected the
number of objects or activation records created on the server, then
information would leak to the client. To prevent this, a crypto-
graphic hash function is used to generate unpredictable identifiers
for computation in server-only closures. Thus, sending the identi-

fier of an object or activation record to the client does not reveal
any confidential details of the server’s execution history.

5.5 GWT and Ajax
We use the Google Web Toolkit [9] (GWT) compiler and frame-

work to translate the client Java programs (and the Swift client run-
time system) to JavaScript. GWT provides browser-independent
support for Ajax and JavaScript user interfaces. This implementa-
tion choice facilitates the development of the Swift run-time system
and compiler, but is not fundamental to the design of Swift.

Ajax permits an elegant implementation of the Swift run-time
protocol. Communication between client and server occurs mostly
invisibly to the user. The server provides a service interface that
accepts requests for closure invocations. GWT automatically gen-
erates asynchronous proxies that the client can access, and provides
marshaling of data sent over the network.

The Ajax model is asymmetric: only the client is able to initiate
a dialogue with the server. Any message sent from the server to
the client (such as a request to invoke a closure) must be a response
to a previous client request. With minor modifications to our run-
time system, we can ensure that whenever the server needs to send
a message to the client, the client has an outstanding request.

6. Evaluation
The Swift compiler extends the Jif compiler with about 20,000

lines of non-comment non-blank lines of Java code. Both the Swift
and Jif compilers are written using the Polyglot compiler frame-
work [18]. The Swift server and client run-time systems together
comprise about 2,600 lines of Java code. The UI framework is im-
plemented in 1,400 lines of WebIL code and an additional 560 lines
of Java code that adapt the GWT UI library. We also ported the Jif
run-time system from Java to WebIL, resulting in about 3,900 lines
of WebIL code. The Jif run-time system provides support for run-
time representations of labels and principals.

Although Swift shares some ideas and techniques with previous
work on Jif/split [33], no compiler or run-time code was reused
from Jif/split, because of significant differences between the sys-
tems. These differences include a richer source language, use of
the intermediate language WebIL, simplified protocols for field ac-
cess and control transfer, and the optimization of partitioning.

To evaluate our system, we implemented six web applications
with varying characteristics. None of these applications is large, but
because they test the functionality of Swift in different ways, they
suggest that Swift will work for a wide variety of web applications.
Because the applications are written in a higher-level language than
is usual for web applications, they provide much functionality (and
contain many security issues) per line of code. Overall, the per-
formance of these web applications is comparable to what can be
obtained by writing applications by hand. Therefore, we do not see
any barrier to using this system on much larger web applications.

6.1 Example web applications

Guess-a-Number.
This running example demonstrates how Swift uses replication

to avoid round-trip communication between client and server. Fig-
ure 5, lines 5–8, show that the compiler automatically replicates
the range check onto the client and server, thus saving a network
message from the server to the client at line 25. Potential insecu-
rities are also avoided by automatically placing the tries field on
the server so a malicious client cannot corrupt it, and by placing
secret on the server where it cannot be leaked or corrupted.

Shop.
This program models an important class of real-world web ap-

plications, and is the largest Swift program written to date. It is an
online shopping application with a back-end PostgreSQL database.
Items may be added to and removed from a shopping cart (automat-
ically updating the total cost), orders can be placed, and users can
update their billing information. Users must log in before shop-
ping; new users can register themselves. The database contains
both confidential authentication and billing information for each
user, and high-integrity inventory information.

Poll.
This application is an online poll that allows users to vote for

one of three options and view the current winner. Server-side static
fields are used to provide persistence and sharing across multi-user
Swift applications. The current count for each choice is kept as
a secret on the server, and an explicit declassification makes the
result available to users who request to see it.

Secret Keeper.
This simple application allows users to store a secret on the server

and retrieve the secret later by logging in. In the source program,
the secret of a user has a strong confidentiality policy that only al-
lows that user principal to read it. Once the user logs in, the acts-for
relationship established between the client and the user principal
permits the secret to be released securely without declassification.
This example shows that Swift can handle complex policies with
application-defined principals, and that it can automatically gener-
ate protocols for password-based authentication and authorization
from high-level information security policies.

Treasure Hunt.
This game is described in Section 5.1. It has a relatively rich

user interface that is dynamically and incrementally updated as the
user discovers what lies beneath cells in the secret grid. Because
the grid is secret, it is placed on the server and accessed via Ajax
calls as it is explored.

Auction.
This online auction application allows users to list items for sale

and bid on items from other users. Once a seller starts an auction, it
is visible to other users, and the current bid as well as the bidder’s
username is shown. The application automatically polls the server
to retrieve auction status updates and updates the display. Buyers
can enter higher bids until the seller ends the auction. Information
about each auction is considered public to users but is maintained
with high integrity on the server.

6.2 Code size results
Table 2 shows the code size of the example applications and

the generated target code. Generated code size is reported in non-
comment tokens rather than in lines, as line counts are not mean-
ingful. However, as a point of comparison, the Jif source programs
use 9–11 tokens per line. The “Java target code” columns report
the size of the Java output for the server and client. Note that this
does not include the Swift run-time systems, nor the UI framework
and Jif runtime. (Recall that the UI framework and Jif runtime are
both implemented in WebIL.) The “JavaScript All” column reports
the size of the code generated by GWT compiling the client Java
target code, including the parts of the UI framework and Jif runtime
that are partitioned onto the client, and the Swift client runtime; the
“JavaScript Framework” column gives the size of code produced
by using GWT to compile just the Swift client runtime and the

Java target code JavaScript
Example Jif Server Client All Framework App

Null program 6 lines 0.7k tokens 0.6k tokens 73 kB 70 kB 3 kB
Guess-a-Number 142 lines 12k tokens 25k tokens 267 kB 104 kB 162 kB

Shop 1094 lines 139k tokens 187k tokens 1.21 MB 323 kB 889 kB
Poll 113 lines 8k tokens 17k tokens 242 kB 104 kB 137 kB

Secret Keeper 324 lines 38k tokens 38k tokens 639 kB 332 kB 307 kB
Treasure Hunt 92 lines 11k tokens 11k tokens 211 kB 99 kB 112 kB

Auction 502 lines 46k tokens 77k tokens 503 kB 116 kB 387 kB

Table 2: Code size of example applications

Actual Optimal
Example Task Server→Client Client→Server Server→Client Client→Server

Guess-a-Number guessing a number 1 2 1 1
Shop adding an item 0 0 0 0
Poll casting a vote 1 1 0 1

Secret Keeper viewing the secret 1 1 1 1
Treasure Hunt exploring a cell 1 2 1 1

Auction bidding 1 1 1 1

Table 3: Network messages required to perform a core UI task

parts of the UI framework and Jif runtime placed on the client. The
difference, in the “JavaScript App” column, indicates how much
JavaScript code is specific to the application.

The size of the application JavaScript code is approximately lin-
ear in the size of the Jif source. For these applications, about 800
bytes of JavaScript is generated per line of application Jif code.
Much of the expansion occurs when Java code is compiled to Java-
Script by GWT, so translating WebIL directly to JavaScript might
reduce code size.

6.3 Performance results
We studied the performance of the example applications from

the user’s perspective. We expect network latency to be the pri-
mary factor affecting application responsiveness, so we measured
the number of network round trips required to carry out the core
user interface task in each application. For example, the core user
interface task in Guess-a-Number is submitting a guess. We also
compared the number of actual round trips to the optimum that
could be achieved by writing a secure web application by hand.

Table 3 gives the number of round trips required for each of the
applications. To count the number of round trips, we measure the
number of messages sent from the server to the client. These mes-
sages are the important measure of responsiveness because it is
these messages that the client waits for. The table also reports the
number of messages sent from the client to the server. Because the
client does not block when these messages are sent, the number of
messages from client to server is not important for responsiveness.

The total number of round trips in the example applications is
always optimal or nearly so. For example, in the Shop applica-
tion, it is possible to update the shopping cart without any client–
server communication. The optimum number of round trips is not
achieved for Poll because the structure of Swift applications cur-
rently requires that the client hear a response to its vote request. For
Guess-a-Number and Treasure Hunt, there are extra client–server
messages triggering server-side computations that the client does
not wait for, but server–client messages remain optimal.

6.4 Automatic repartitioning
One advantage of Swift is that the compiler can repartition the

application when security policies change. We tested this feature
with the Guess-a-Number example: if the number to guess is no
longer required to be secret, the field that stores the number and
the code that manipulates it can be replicated to the client for better
responsiveness. Lines 9–13 of Figure 5 all become replicated on
both server and client, and the message for the transition from line
13 to 14 is no longer needed. The only source-code change is to
replace the label {*�*; *�*} with {*�client; *�*} on line 3
of Figure 2. Everything else follows automatically.

7. Related work
In recent years there have been a number of attempts to improve

web application security. At the same time, there has been in-
creasing interest in unified frameworks for web application devel-
opment. The goals of these two lines of work are in tension, since
moving code to the client affects security. Because it provides a
unified programming framework that enforces end-to-end informa-
tion security policies, Swift is at the confluence of these two lines
of work.

7.1 Information flow in web applications
Several previous systems have used information flow control to

enforce web application security. This prior work is mostly con-
cerned with tracking information integrity, rather than confidential-
ity, with the goal of preventing the client from subverting the appli-
cation by providing bad information (e.g., that might be used in an
SQL query). Some of these systems use static program analysis (of
information flow and other program properties) [11, 27, 12], and
some use dynamic taint tracking [10, 17, 28], which usually has the
weakness that the untrusted client can influence control flow. Con-
current work uses a combination of static and dynamic information
flow tracking and enforces both confidentiality and integrity poli-
cies [3]. Unlike Swift, none of this prior work addresses client-side
computation or helps decide which information and computation
can be securely placed on the client. Most of the prior work (ex-

cept [3]) only controls information flows arising from a single client
request, and not information flow arising across multiple client ac-
tions or across sessions.

Instrumenting JavaScript with dynamic security checks [31] has
been proposed to protect sensitive client information from cross-
site scripting attacks and similar vulnerabilities. In these attacks,
a malicious website attempts to retrieve information from another
browser window or session to which it should not have access. The
usual avenue of attack is via JavaScript’s ability to interpret and
execute user-provided input as unchecked code, using the eval op-
eration. Because Swift does not expose these “higher-order script-
ing” capabilities of JavaScript, it is not vulnerable to these attacks.

7.2 Uniform web application development
Several recently proposed languages provide a unified program-

ming model for implementing applications that span the multiple
tiers found in web applications. However, none of these languages
helps the user automatically satisfy security requirements, nor do
they support replication for improved interactive performance.

Links [4] and Hop [21] are functional languages for writing web
applications. Both allow code to be marked as client-side code,
causing it to be translated to JavaScript. Links does this at the
coarse granularity of individual functions, whereas Hop allows in-
dividual expressions to be partitioned. Links supports partitioning
program code into SQL database queries, whereas Hop and Swift
do not. Swift does not have language support for database ma-
nipulation, though a back-end database can be made accessible by
wrapping it with a Jif signature. To keep server resource consump-
tion low, Links stores all state on the client, which may create secu-
rity vulnerabilities. Neither Links nor Hop helps the programmer
decide how to partition code securely.

Hilda [30, 29] is a high-level declarative language for develop-
ing data-driven web applications. The most recent version [29]
also supports automatic partitioning with performance optimization
based on linear programming. Hilda does not support or enforce
security policies, or replicate code or data. Hilda’s programming
model is based on SQL and is only suitable for data-driven applica-
tions, as opposed to Swift’s more general Java-based programming
model. Swift partitions programs on a much finer granularity than
on Hilda’s “Application Units”, which are roughly comparable to
classes; fine-grained partitioning is critical to resolve the tension
between security and performance. The performance optimization
problem in Hilda is NP-complete, and is solved with a bicriteria ap-
proximation algorithm, while Swift has a problem that is solvable
in polynomial time, and an efficient algorithm is presented.

A number of popular web application development environments
make web application development easier by allowing a higher-
level language to be embedded into HTML code. For example,
JSP [1] embeds Java code, and PHP [19] and Ruby on Rails [25]
embed their respective languages. None of these systems help to
manage code placement, or help to decide when client-server com-
munication is secure, or provide fully interactive user interfaces
(unless JavaScript code is used directly). Programming is still awk-
ward, and reasoning about security is challenging.

The Google Web Toolkit [9] makes construction of client-side
code easier by compiling Java to JavaScript, and provides a clean
interface for Ajax requests. However, GWT neither unifies pro-
gramming across the client–server boundary, nor addresses secu-
rity.

7.3 Security by construction
An important aspect of Swift is that it provides security by con-

struction: the programmer specifies security requirements, and the

system transforms the program to ensure that these requirements
are met. Prior work has explored this idea in other contexts.

The Jif/split system [32, 33] also uses Jif as a source language
and transforms programs by placing code and data onto sets of
hosts in accordance with the labels in the source code. Jif/split ad-
dresses the general problem of distributed computation in a system
incorporating mutual distrust and arbitrary host trust relationships.
Swift differs in exploring the challenges and opportunities of web
applications. Web applications have a specialized trust model, and
therefore specialized construction techniques are used to exploit
this trust relationship. In particular, replication is used by Jif/split
to boost integrity, whereas Swift uses replication to improve per-
formance and responsiveness. In addition, Swift uses a more so-
phisticated algorithm to determine the placement and replication of
code and data to the available hosts. Swift applications support dy-
namic user interfaces (represented as complex, compositional data
structures) and control the information flows that result. No Jif/split
applications contain data structures or control flow of comparable
complexity. Jif’s label parameterization is needed to reason about
information flow in complex data structures, as in Figure 3, but
Jif/split lacks the necessary support for label parameters.

Program transformation has also been applied to implementing
secure function evaluation in a distributed system, in Fairplay [13].
Its compiler translates a two-party secure function specified in a
high-level language into a Boolean circuit. Fairplay provides strong,
precise security guarantees for simple computations, but does not
scale to general programs. However, its techniques might be appli-
cable within a larger framework such as Swift.

8. Conclusions
We have shown that it is possible to build web applications that

enforce security by construction, resulting in greater security as-
surance. Further, Swift automatically takes care of some awkward
tasks: partitioning application functionality across the client–server
boundary, and designing protocols for exchanging information.

Writing Swift code does require writing security label annota-
tions. These annotations are mostly found on method declarations,
where they augment the information specified in existing type an-
notations. In our experience, the annotation burden is clearly less
than the current burden of managing client–server communication
explicitly, even ignoring the effort that should be expended on man-
ually reasoning about security. More sophisticated type inference
algorithms might further lessen the annotation burden, but we leave
this to future work.

Swift satisfies three important goals: enforcement of informa-
tion security; a dynamic, responsive user interface; and a uniform,
general-purpose programming model. No prior system delivers
these capabilities. Because web applications are being used for
so many important purposes by so many users, better methods are
needed for building them securely. Swift appears to be a promising
solution to this important problem.

Acknowledgments
We would like to thank David P. Williamson for the helpful discus-
sion on the optimization problem and its algorithm. Thanks also
to the SOSP reviewers and our shepherd David Mazières, for very
useful comments and suggestions.

This work was supported in part by the National Science Founda-
tion under grants 0430161 and 0627649, and in part by AF-TRUST
(Air Force Team for Research in Ubiquitous Secure Technology
for GIG/NCES), which receives support from the DAF Air Force
Office of Scientific Research (FA9550-06-1-0244) and the NSF

(0424422). Stephen Chong was awarded an SOSP student travel
scholarship, supported by the NSF.

9. References
[1] Hans Bergsten. JavaServer Pages. O’Reilly & Associates,

Inc., 3rd edition, 2003.
[2] Stephen Chong and Andrew C. Myers. Decentralized

robustness. In Proc. 19th IEEE Computer Security
Foundations Workshop, pages 242–253, July 2006.

[3] Stephen Chong and K. Vikram. SIF: Enforcing
confidentiality and integrity in web applications. In Proc.
16th USENIX Security Symposium, August 2007. To appear.

[4] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy
Yallop. Links: Web programming without tiers. In Proc. 5th
International Symposium on Formal Methods for
Components and Objects, November 2006.

[5] Thomas A. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. MIT Press, 1990.

[6] Dorothy E. Denning and Peter J. Denning. Certification of
programs for secure information flow. Comm. of the ACM,
20(7):504–513, July 1977.

[7] U. Derigs and W. Meier. Implementing Goldberg’s max-flow
algorithm—a computational investigation. Methods and
Models of Operations Research (ZOR), 33:383–403, 1989.

[8] David Flanagan. JavaScript: The Definitive Guide. O’Reilly,
4th edition, 2002.

[9] Google Web Toolkit. .
http://code.google.com/webtoolkit/.

[10] W. Halfond and A. Orso. AMNESIA: Analysis and
monitoring for neutralizing SQL-injection attacks. In Proc.
International Conference on Automated Software
Engineering (ASE’05), pages 174–183, November 2005.

[11] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung
Tsai, Der-Tsai Lee, and Sy-Yen Kuo. Securing web
application code by static analysis and runtime protection. In
Proc. 13th International World Wide Web Conference
(WWW’04), pages 40–52, May 2004.

[12] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static
analysis tool for detecting web application vulnerabilities. In
Proc. IEEE Symposium on Security and Privacy, May 2006.

[13] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella.
Fairplay—a secure two-party computation system. In Proc.
13th Usenix Security Symposium, pages 287–302, San
Diego, CA, August 2004.

[14] Andrew C. Myers. JFlow: Practical mostly-static
information flow control. In Proc. 26th ACM Symp. on
Principles of Programming Languages (POPL), pages
228–241, San Antonio, TX, January 1999.

[15] Andrew C. Myers and Barbara Liskov. Protecting privacy
using the decentralized label model. ACM Transactions on
Software Engineering and Methodology, 9(4):410–442,
October 2000.

[16] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen
Chong, and Nathaniel Nystrom. Jif: Java information flow.
Software release, http://www.cs.cornell.edu/jif, July
2001.

[17] A. Nguyen-Tuong, S. Guarneri, D. Greene, and D. Evans.
Automatically hardening web applications using precise
tainting. In Proc. 20th International Information Security
Conference, pages 372–382, May 2005.

[18] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C.
Myers. Polyglot: An extensible compiler framework for
Java. In Görel Hedin, editor, Compiler Construction, 12th
International Conference, CC 2003, number 2622 in Lecture
Notes in Computer Science, pages 138–152, Warsaw,
Poland, April 2003. Springer-Verlag.

[19] PHP: hypertext processor. http://www.php.net.
[20] John C. Reynolds. Definitional interpreters for higher-order

programming languages. In ACM ’72: Proceedings of the
ACM annual conference, pages 717–740, 1972.

[21] M. Serrano, E. Gallesio, and F. Loitsch. HOP, a language for
programming the Web 2.0. In Proc. 1st Dynamic Languages
Symposium, October 2006.

[22] Guy L. Steele, Jr. RABBIT: A compiler for Scheme.
Technical Report AITR-474, MIT AI Laboratory,
Cambridge, MA, May 1978.

[23] Java Swing (Java Foundation Classes) .
http://java.sun.com/javase/technologies/desktop.

[24] Symantec Internet security threat report, volume X.
Symantec Corporation, September 2006.

[25] Dave Thomas, Chad Fowler, and Andy Hunt. Programming
Ruby: The Pragmatic Programmers’ Guide. The Pragmatic
Programmers, 2nd edition, 2004. ISBN 0-974-51405-5.

[26] Dennis Volpano and Geoffrey Smith. A type-based approach
to program security. In Proc. 7th International Joint
Conference on the Theory and Practice of Software
Development, pages 607–621, 1997.

[27] Yichen Xie and Alex Aiken. Static detection of security
vulnerabilities in scripting languages. In Proc. 15th USENIX
Security Symposium, July 2006. To appear.

[28] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat a wide
range of attacks. In Proc. 15th USENIX Security Symposium,
August 2006.

[29] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan
Demers, Johannes Gehrke, and Jayavel Shanmugasundaram.
A unified platform for data driven web applictions with
automatic client-server partitioning. In WWW ’07:
Proceedings of the 16th international conference on World
Wide Web, 2007.

[30] Fan Yang, Jayavel Shanmugasundaram, Mirek Riedewald,
and Johannes Gehrke. Hilda: A high-level language for
data-driven web applications. In ICDE ’06: Proceedings of
the 22nd International Conference on Data Engineering
(ICDE’06), page 32, Washington, DC, USA, 2006. IEEE
Computer Society.

[31] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor
Serikov. JavaScript instrumentation for browser security. In
Proc. 34th ACM Symp. on Principles of Programming
Languages (POPL), pages 237–249, January 2007.

[32] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and
Andrew C. Myers. Secure program partitioning. ACM
Transactions on Computer Systems, 20(3):283–328, August
2002.

[33] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve
Zdancewic. Using replication and partitioning to build secure
distributed systems. In Proc. IEEE Symposium on Security
and Privacy, pages 236–250, Oakland, California, May
2003.

