
Efficient, Consistent Distributed Computation
with Predictive Treaties

Tom Magrino
Cornell University
Ithaca, NY, USA

tmagrino@cs.cornell.edu

Jed Liu∗
Barefoot Networks
Ithaca, NY, USA

liujed@cs.cornell.edu

Nate Foster
Cornell University
Ithaca, NY, USA

jnfoster@cs.cornell.edu

Johannes Gehrke
Microsoft Corporation
Redmond, WA, USA

johannes@microsoft.com

Andrew C. Myers
Cornell University
Ithaca, NY, USA

andru@cs.cornell.edu

Abstract
To achieve good performance, modern applications often par-
tition their state across multiple geographically distributed
nodes. While this approach reduces latency in the common
case, it can be challenging for programmers to use correctly,
especially in applications that require strong consistency. We
introduce predictive treaties, a mechanism that can signifi-
cantly reduce distributed coordination without losing strong
consistency. The central insight behind our approach is that
many computations can be expressed in terms of predicates
over distributed state that can be partitioned and enforced
locally. Predictive treaties improve on previous work by al-
lowing the locally enforced predicates to depend on time.
Intuitively, by predicting the evolution of system state, coor-
dination can be significantly reduced compared to static ap-
proaches. We implemented predictive treaties in a distributed
system that exposes them in an intuitive programming model.
We evaluate performance on several benchmarks, including
TPC-C, showing that predictive treaties can significantly in-
crease performance by orders of magnitude and can even
outperform customized algorithms.
ACM Reference Format:
Tom Magrino, Jed Liu, Nate Foster, Johannes Gehrke, and Andrew
C. Myers. 2019. Efficient, Consistent Distributed Computation with
Predictive Treaties. In Fourteenth EuroSys Conference 2019 (EuroSys
’19), March 25–28, 2019, Dresden, Germany. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3302424.3303987

∗Work done while at Cornell

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’19, March 25–28, 2019, Dresden, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6281-8/19/03. . . $15.00
https://doi.org/10.1145/3302424.3303987

1 Introduction
In an ideal world, programmers couldwrite high-performance
distributed applications using abstractions that provide strong,
easy-to-understand consistency guarantees. Unfortunately,
programmers today usually choose between performance and
strong consistency. Mechanisms that ensure strong consis-
tency, such as serializable transactions, offer a simple pro-
gramming model but generally require costly synchroniza-
tion. On the other hand, mechanisms that avoid synchroniza-
tion, such as conflict-free replicated data types (CRDTs), are
limited in the operations they support or the consistency they
provide. Hence, they can be difficult to use correctly.
This work develops a new mechanism, predictive treaties,

that helps move toward the best of both worlds: strong consis-
tency with reduced synchronization. The key insight is that
future updates to the results of computations can often be
cheaply predicted with reasonable accuracy based on previ-
ous updates. Moreover, these predictions can be used to avoid
remote data access without harming consistency guarantees
that applications rely on.
Predictive treaties capture the predictability of computa-

tion using logical predicates over system state. For instance,
if a deterministic computation f (x) produces a value y, a
corresponding predicate f (x) = y holds. As long as x does
not change, the value y can be cached and reused without
recomputing f (x), which might otherwise read data x located
on a remote node. This essential insight has been exploited by
the previous work on warranties [33] and homeostasis [45].
Predictive treaties improve performance through more opti-
mistic, accurate estimates of how long a predicate will hold.
The key novelty is the introduction ofmetrics, which measure
the expected “distance” to the violation of a predicate and
predict how this distance will change. Metrics allow predic-
tive treaties to be time-dependent: predictive treaties not only
model the current state of the system, but also anticipate how
the state will change as a function of time. For example, if f (x)
above computes the amount of stock in a warehouse, a pre-
dictive treaty might guarantee the inequality f (x) > 100− 5t ,
where t represents elapsed time in minutes. Such a treaty

https://doi.org/10.1145/3302424.3303987
https://doi.org/10.1145/3302424.3303987

would allow this inequality (and any other predicate it im-
plies) to be evaluated without any distributed communication.
Note that a predictive treaty is not an invariant in the strictest
sense, as it is not guaranteed to hold for all time. Even so,
our evaluation shows that time dependence allows predictive
treaties to reduce synchronization by orders of magnitude
for some applications.
Another novelty of predictive treaties is that they can be

hierarchical: a treaty can be enforced by a set of other predic-
tive treaties when the predicates in the lower-level treaties
collectively imply the predicate in the top-level treaty. In
cases where lower-level predictive treaties are each defined
with respect to the local state at a single node, updates to
that local state can be handled without synchronization, pro-
vided the update does not invalidate any local treaties. Thus,
the higher-level predicate can be enforced locally, without
synchronization. By structuring predictive treaties into a well-
designed hierarchy, it is possible to build systems in which
distributed synchronization tends to involve small subgroups
of nodes with good locality.
Of course, predictive treaties are not free: there are costs

associated with creating and maintaining run-time objects to
represent metrics and predicates. In a naive implementation,
these costs could be greater than the costs associated with
executing the distributed application itself. To help reduce
this overhead, we introduce stipulated commit, a mechanism
that allows the programmer to propose updates which are
applied only if doing so does not violate a treaty. As shown
in our evaluation, stipulated commit enables building dis-
tributed applications using simple predictive treaties whose
performance is competitive with hand-written code.
In summary, this paper explores the design and imple-

mentation of predictive treaties as a primitive for distributed
programming, and makes the following contributions:

• We introduce predictive treaties and illustrate how their
time dependence allows communication to be avoided,
by using trends in local updates to predict future state.

• We show that with acceptable cost,metrics can be main-
tained that predict state evolution with sufficient accu-
racy to support predictive treaties.

• We demonstrate that hierarchical predictive treaties can
be used to localize and reduce synchronization costs.

• We introduce stipulated commit as a programming ab-
straction that simplifies obtaining good performance
from predictive treaties.

2 System Model
Applications are assumed to run on a distributed system com-
prising multiple geodistributed host nodes that store data
objects and perform computation. Each object’s current state
is stored at a single location (its store). A store may be im-
plemented by a machine or by a set of machines, possibly

replicated across an availability zone1 for high availability.
We abstract from such implementation details of a store and
just treat it as a single node.

Clients can read and modify objects at one or more stores
within a distributed transaction. The system uses a commit
protocol, such as two-phase commit (2PC) [11], to ensure
that transactions are linearizable (strictly serializable) [25, 40].
Thus, unlike some prior work (e.g., [8, 9]) that enforces no-
tions of consistency defined in terms of programmer-specified
invariants, we assume that the underlying system offers strong
consistency by default.
We refer to the system state as seen by a transaction as

the current system state; it is the set of object values that
result from applying previously committed transactions in
the serialization order guaranteed by strict serializability. In a
running transaction that has not yet committed, an objectmay
take on a new value that is not yet visible to other transactions,
and this object valuemay be cached at the client(s) performing
the transaction. Once the transaction is committed, the new
object value is updated at the object’s store and becomes part
of the current system state.
For transactions that span multiple geodistributed stores,

the high communication latency can reduce throughput and
increase contention with other transactions. Our goal is to
avoid distributed synchronization, where client requests wait
for communication over long distances. In particular, we aim
to avoid multi-store transactions, whose commit protocols
require such synchronization. Background messages sent
outside of client-initiated transactions are not considered
synchronizations if they are unlikely to delay client requests.
We assume that system nodes maintain loosely synchro-

nized clocks that agree with only limited precision. This as-
sumption is reasonable; the accuracy of clock synchronization
offered by older protocols such as NTP [37] and Marzullo’s
algorithm [35] already suffices for the results presented in
this paper. In fact, recent work has shown that clocks can
be kept synchronized with much greater precision and with
failure rates that are lower than a host of other more serious
failures such as bad CPUs [15, 21, 29, 46].

3 Predictive Treaties by Example: Voting
We begin by considering a simple application where pre-
dictive treaties prove useful: a voting system that totals the
votes for candidates in an election. Votes arrive at one of
some number of geographically distributed voting stations
and must be tallied to obtain candidate totals. The application
keeps track of which candidate is leading—a global property—
and makes this information widely available. While accurate
up-to-the-minute winner determination is not a feature of
current voting systems, it is paradigmatic of a broader class of
applications requiring tracking of data aggregates [6, 14, 41].

1A group of data centers with low latency between them.
2

winning_candidate()	=	A

m₁	+	m₂	>	0

m₁	>	r₁t	+	k₁ m₂	>	r₂t	+	k₂

Figure 1. Locally enforceable predictive treaties imply a
global predicate. Here k2 = −k1 and r2 = −r1.
For simplicity, assume there are two candidates, A and B,

and two voting stations, nodes S1 and S2. The two nodes pro-
cess transactions for casting votes, vote(A) or vote(B), and
query for the current front runner, winning_candidate().
Voting increments a station-local vote total for the indicated
candidate. At station S1, the vote totals for the two candidates
are a1 and b1; at S2, they are a2 and b2. Front runner queries
return which candidate has a greater vote total across both
nodes, ie. returning A when a1 + a2 > b1 + b2.
Because the current winner is a global property that de-

pends on widely distributed data, any straightforward imple-
mentation of winning_candidate() using conventional se-
rializable transactions will be slow, even if thewinner changes
infrequently. Each transaction must check who the new win-
ning candidate is before committing, and this check requires
synchronization among all voting stations to ensure that the
vote totals observed are consistent with the system state. For-
tunately, the state of this application evolves in a predictable
way that can be exploited by predictive treaties to avoid syn-
chronization. In particular, each update changes only one
total at a single station. Furthermore, we may reasonably
assume that the overall voting trend is fairly consistent at
each station, over significant time periods.

3.1 Enforcing Predicates with Slack
Suppose A is in the lead, and the application creates a global
predicate, winning_candidate() = A, to monitor the cur-
rent winner. This global predicate can be enforced using pre-
dictive treaties that track the local vote totals at each station.

With A currently in the lead, the global predicate is equiv-
alent to the predicate (a1 − b1) + (a2 − b2) > 0: the total of
the margins must be positive. Defining local margin variables
m1 = a1 − b1 andm2 = a2 − b2, this predicate can be written
more simply:m1 +m2 > 0.
The quantity m1 + m2 changes by 1 on each vote, so it

tracks theminimumnumber of votes that might invalidate the
global predicate. We call this quantity the slack of the global
predicate, because it measures how far the global predicate
is from being invalidated. The global predicate can therefore
be enforced by identifying values k1 and k2 such that the
inequalitiesm1 > k1 andm2 > k2 hold and the global slack
k1 + k2 is nonnegative. As long as the local predicates hold at
all of the nodes, no synchronization is required. If an update
violates a local predicate, then synchronization among the

nodes is required, either to invalidate the global predicate or
to establish new local predicates that can then be enforced.
However, consistency is not threatened by the falsification of
local predicates: the system falls back to synchronization to
ensure consistency when predictive treaties no longer hold.

Ignoring questions of how to obtain local predicates and of
how to choose values for k1 and k2, what we have described
thus far corresponds to the approach taken in prior work [45].
We show next how to further improve performance using
predictive treaties, which generalize static predicates with
mechanisms for predicting the evolution of system state in
order to reduce synchronization.

3.2 Time-Dependent Treaties
Assume voting stations are associated with populations that
each exhibit their own overall preference for the candidates.
Further, for simplicity, assume that voters cast votes inde-
pendently with different biases at the two sites. In this case,
there may be some variation in the local margin observed
at each node, but a trend is likely to be observable over a
long series of votes. For example, if the population at node
S1 is split 60–40 for candidate A, and an equal-sized popu-
lation at node S2 is split 48–52, then the margin for A at S1
is likely to increase over time, whereas the margin for A at
S2 is likely to (more slowly) decrease over time. In this case,
we say that S1 is a positively biased node, because its updates
tend to increase the slack of the global predicate. Conversely,
S2 is a negatively biased node: its updates tend to decrease the
slack of the global predicate. Assuming that voting patterns
do not change over time, it is likely that the total bias across
all nodes will be positive, meaning that the global predicate
is unlikely to be violated soon.
Note that the assumption of independence of voting does

not need to hold perfectly. What is key is that there are pre-
dictable trends over time periods that are long enough to be
useful for reducing synchronization. If votes are correlated
with time—for example, if B voters tend to vote later than A
voters, then the trend may depend on time, and global bias
could become negative as the trend switches.
We can take advantage of these underlying trends by cre-

ating time-dependent treaties that automatically track the
evolution of system state. Suppose that the nodes have the
biases above (the system is positively biased), and for simplic-
ity, that votes arrive at an average rate of one vote per time
unit at each site. Then the expected rate of increase in global
slack from node S1 is 0.2 votes per time unit, whereas S2 is
expected to decrease global slack by 0.04 votes per time unit.
We can then define local predicates that incorporate these
slack velocities. For some constants k1, k2, r1, and r2, node S1
enforces a local predicate—a predictive treaty—with the form
m1 > r1t +k1, and S2 enforcesm2 > r2t +k2. If the sum k1+k2
is no larger than the initial global slack and the sum r1 + r2 is

3

103 104 105
0

0.2

0.4

0.6

0.8

1

Milliseconds before first synchronization

Fr
ac
tio

n
of

Tr
ia
ls

Static equal
Static optimal
Predictive treaties

Figure 2. CDF of time until first synchronization under three
different slack-allocation strategies. With predictive treaties,
less than 1% of runs synchronize.

nonnegative, the conjunction of these local treaties enforces
the global treaty, as depicted in Figure 1.

The parameters r1 and r2 allow building slack velocities into
the local predicates with the effect that slack is continuously
transferred between nodes without any synchronization. If
r1 < 0.2 and r2 < −0.04 (with r1 + r2 ≥ 0 as before), the local
predicates at S1 and S2 can remain true indefinitely, despite
the negative bias of S2. Specifically, if we choose r1 = 0.12
and r2 = −0.12, local slack is expected to accumulate, equally
fast, at both S1 and S2.

Of course, it would be awkward for programmers to have
to choose values for parameters like ri and ki . Fortunately,
they do not need to make this choice. The predictive treaties
framework selects them automatically—see Section 4.5.

3.3 Preliminary Evaluation
To see the potential performance benefits of predictive treaties,
consider the results from a distributed implementation of the
two-station scenario just described, shown in Figure 2. (Sec-
tion 7 presents the implementation in more detail.) Stations
receive 100 votes per second. The program creates a treaty
after 30 seconds of voting with the given biases and mea-
sures the time until the system must synchronize to create
new treaties. The time to this first synchronization is a proxy
for the median time between synchronizations. The figure
compares three strategies for avoiding synchronization, com-
bining data from 100 trials for each. The dotted red line shows
the result when dividing slack equally between the nodes, in
a manner similar to that of some previous work [6, 16]. The
dashed green line shows the result when using knowledge
of the workload to optimally give most of the slack to the
negatively biased node; this strategy, which almost doubles
the median time to first synchronization, is most similar to
the homeostasis approach [45], which uses workload data
to approximate the optimal static division of slack. How-
ever, predictive treaties reduce synchronization even more
dramatically, as shown by the solid blue line in the figure.

Synchronization is usually avoided entirely, improving sig-
nificantly on even the best possible static division of slack.
In fact, because predictive treaties adapt to stable trends in
the updates, the intervals between synchronizations actually
tend to increase over time.

3.4 Hierarchical Treaties
A typical voting system would have more than two voting
stations. The approach sketched above can be generalized
directly to an arbitrary number of nodes by dividing up slack
and slack velocity among all participating nodes. However,
this approach does not scale well: the rate of synchroniza-
tion increases because there are more predictive treaties that
can individually fail, and the cost of synchronization also
increases because more nodes need to achieve consensus on
the new predictive treaties to be enforced subsequently.
A better alternative is to enforce predictive treaties hi-

erarchically. As described above, a predicate of the form
m1 +m2 > 0, wherem1 andm2 are the margins at the two
nodes, can be enforced via predictive treaties of the form
m1 > r1t + k1 and m2 > −r1t − k1. But this strategy can
be generalized. Assertions of the form mi > rit + ki can
themselves be enforced recursively via lower-level predictive
treaties at other nodes.
Hence, we can organize the voting stations into a tree in

which connected nodes, especially near the leaves of the tree,
are located near each other to reduce communication latency.
Each tree node enforces a predictive treaty. Leaf nodes ac-
cept votes that update state and that potentially violate the
predictive treaty which the node is enforcing. Interior nodes
enforce predictive treaties of the same form by negotiating
predictive treaties with their child nodes based on the relative
bias of those nodes. Slack and velocity are distributed from
the root downward in such a way that predicate failures occur
infrequently and when they occur, usually do not propagate
changes high into the treaty tree.
As the results in Section 7 show, hierarchical predictive

treaties allow synchronization to be localized to just part of
the system, involving relatively few nodes that are connected
with relatively low latency.

4 Predictive Treaties and Metrics
We now present our approach in more formal manner, intro-
ducing predictive treaties as well as metrics, which enable
efficient and largely automatic enforcement.

4.1 Predictive Treaties
A predictive treaty is a time-limited predicate on the value of
a metric computation and the current time

predicate︷ ︸︸ ︷
ϕ(m(s)︸︷︷︸

metric

, t) until texpiry (1)

4

The predicate is guaranteed to be true until the associated ex-
piry time has passed or until the treaty is explicitly retracted.
Note that these predicates are not necessarily invariants of
the system state, and may only hold briefly.

The components of the treaty are as follows:
• m : S → τ is a metric, which represents a computation
on a system state s ∈ S , with a result of type τ .

• ϕ : τ × T→ B is a boolean predicate over the metric’s
value and the current time t .

• texpiry is the expiry time, after which the predicate ϕ is
no longer guaranteed to be true.

The general form of predictive treaty (1) is a predicate over
both the state s and time t . Time is left out of the metric, and
is therefore treated differently from other parts of system
state. This simplification is useful because the system has no
control over how time evolves.
The voting example in Section 3 demonstrates threshold

treaties, in which the predicate ϕ checks a time-dependent
vector threshold against a vector-valued metric:

predicate ϕ︷ ︸︸ ︷
®m(s)︸︷︷︸
metric

≥ ®b(t)︸︷︷︸
boundary

until texpiry (2)

Here, the metric type τ is Rn for some number of dimen-
sions n. For the treaty to hold, the predicate’s inequality
®m(s) ≥ ®b(t) must hold componentwise; effectively, the pre-
dictive treaty enforces a conjunction of n scalar constraints
that share an expiration time.

Threshold treaties model two intuitions from Section 3:
• To enforce distributed assertions with low synchroniza-
tion, we use local assertions that are “far” from being
violated. The metric represents the current system state
as a point in Rn that is compared with a boundary ®b(t).
When the metric’s location is far from the boundary,
the treaty is similarly far from being violated.

• Slack can be implicitly shifted between nodes by having
their treaties vary with time. The boundary term ®b(t)
shifts over time to either reduce or increase slack.

Threshold treaties have a variety of uses and can be main-
tained with low synchronization overhead. Linear threshold
treaties, in which the boundary ®b(t) depends linearly on t ,
are particularly useful, as in the voting example.

As in prior systems [2, 3, 15, 30, 31, 46], we rely on loosely
synchronized clocks. We account for possible skew ε between
clocks by enforcing the most conservative interpretation of a
predictive treaty—i.e., assume that clocks may differ by ε .

4.2 Enforcing Predictive Treaties
We say that a predictive treaty created at time tcreate holds if
for all times t ∈ [tcreate, texpiry), the predicate ϕ(m(s), t) holds.
In other words, a predictive treaty holds if, after its creation,

T2

φ(m(s),t)

sT1

Figure 3. System state s evolves within the intersection of
local predictive treaties, enforcing global predicate ϕ(s).

and at any time before texpiry, a distributed application can use
it in place of a strongly consistent computation that explicitly
checks the predicate.

A predicate ϕ(m(s), t) that currently holds may be violated
(i.e., stop holding) in two ways:

• An update to the system state may change the value
of the metric m from value m(s) = v to a new value
m(s ′) = v ′, such that ϕ(v ′, t) is false.

• As time passes, the predicate may become false due to
its dependence on t . In the case of threshold treaties,
®b(t) can grow with time and become larger than the
value of ®m(s) in the current system state.

For a given system state, the future time tfail when this sec-
ond scenario occurs, if any, can be determined from the cur-
rent value of m(s), assuming ®b(t) is suitably well-behaved.
Therefore, to ensure that a predictive treaty holds, the system
ensures that texpiry ≤ tfail, if it exists. This may invalidate the
treaty if texpiry is set to earlier than the current time.
A direct method for enforcing predictive treaties is to re-

computem and update texpiry as needed on each update to the
state s supplied to the metricm. However, recomputingm can
be expensive and may require synchronization if it reads state
from more than one node. A different strategy that avoids
this synchronization is to instead enforce multiple local sub-
treaties that in conjunction imply the original, higher-level
treaty. The subtreaties are local in the sense that they only
depend on local state, so they can be enforced without syn-
chronization. This approach is illustrated in Figure 3, where
a global predicate ϕ(m(s), t) is enforced using subtreaties T1
andT2. As long as system state s stays within the intersection
of T1 and T2, it also satisfies ϕ(m(s), t). Using subtreaties to
enforce a predictive treaty, texpiry only needs to be updated for
the original predictive treaty if the minimum expiration time
of the subtreaties has become earlier than texpiry. Hence, the
system requires less synchronization if subtreaties are chosen
so that the minimum of their expiration times is unlikely to
change, despite changes to the state read by their metrics.

4.3 Metrics
The metric in a predictive treaty is an object that tracks the
value of a computation over stored state. The implementation

5

of a metric may also track statistics for modeling how this
value evolves over time. These update statistics can help pre-
dict future changes and, as a result, enable estimation of how
long the predicate in the treaty will hold. We discuss specifics
of a statistical model used for threshold treaty predictions in
Section 4.4.

There are two kinds of metrics, direct and derived:
Direct metrics. Direct metrics are computed directly from
the state of the system, and are updated as the system state
evolves. Recall that in the hierarchical voting system example,
there is a tree of predictive treaties. Each leaf node in the tree
maintains a direct metric for the margin observed at that
node. As votes come in, changing the margin, the metric and
its estimated statistics are updated.
Derived metrics. Derived metrics are used for hierarchical
predictive treaties. They depend on other metrics. In the hier-
archical voting system, each interior node maintains derived
metrics, which in this case are aggregate margins for the sub-
tree at that point, like the node labeledm1 +m2 in Figure 1.
To avoid synchronization, the state of a derived metric is con-
structed using the state of its submetrics and is not updated
until nodes are otherwise required to synchronize. When a
node maintaining a derived metric synchronizes with the
nodes maintaining the source metrics, the statistics for the
source metrics are combined to construct statistics for the
derived metric.

The hierarchy created using derived metrics creates a met-
rics tree, with direct metrics as the leaves and derived metrics
as the internal and root nodes. Metrics trees are analogous to
abstract syntax trees for representing program structure in
compilers or logical plans in databases; their structure guides
the system when automatically creating subtreaties.

4.4 Models for Predicting Metrics
Accurate prediction of the system trajectory depends on track-
ing not only the current value of metrics, but also other at-
tributes. For threshold treaties, the expected metric velocity
(that is, rate of change in Rn) allows the system to estimate
how long it will take for a given predictive treaty to fail. This
estimation allows choosing predictive treaties at multiple
nodes that allocate slack so that the earliest predictive treaty
violation is expected to happen as late as possible.

Of course, system state does not typically exhibit perfectly
predictable behavior. To predict the value of a metric, some
model of its behavior is needed. If the model is inaccurate, it
can harm performance, but not consistency.
We have explored a simple model for numeric metrics,

as a random variable M that is the sum of two processes: a
predictable linear process and a scaled Brownian process [17]
that represents the accumulation of random variation. The
variable M is defined as M = m0 + vt + σBt , where the
linear process currently has valuem0 and moves at constant
velocityv . The Brownian process σBt at time t has a Gaussian

distribution with standard deviation σ
√
t . A numeric metric

is therefore characterized by three parameters:m0, v , σ .
For example, in the voting example of Section 3.2, at site S1

(where votes are split 60–40), the margin is a Markov chain
that is approximated well by parametersm0 = 0, v = 0.2, and
σ = 0.98.

If underlying system state changes in an approximately
linear way, it is reasonable to use a linear model for the non-
random component of the metric; we have no evidence that
more complex models of metric behavior will be worthwhile.
Work in settings with weaker consistency needs have found
that linear models often work well in practice, with dimin-
ishing returns for more sophisticated models [22]. However,
a larger class of functions could be captured by including
a transformation in the metric. For example, a quantity ex-
pected to vary exponentially over time can be converted into
a linear metric by using the logarithm of the quantity as the
metric. Quantities expected to vary polynomially could be
similarly transformed to more nearly linear behavior.

In our system, numeric direct metrics create estimates of v
and σ . These estimates, in addition to the current valuem0,
are used by the system when constructing predictive treaties.
To accommodate changes in workload over time, we use an
exponentially weighted moving average (EWMA) [13, 26, 36].
With amoving average, old behavior of the metric is forgotten
over time, at the price of lower accuracy for stable workloads.
In the case of a derived metric, estimates are derived from
the parameter estimates of the derived metric’s submetrics.

4.5 Choosing Treaty Parameters Automatically
When using predictive treaties, programmers are only re-
quired to specify the top-level treaties used by their applica-
tion. Any subtreaties needed to avoid synchronization are
automatically chosen by the runtime system. Subtreaties are
chosen by a recursive procedure that starts from the top-level
treaty metric and works down the metrics tree. At each de-
rived metricm (a parent node in the metrics tree), subtreaties
are chosen for the submetrics using a two-step procedure
similar to syntax-directed translation in compilers [4] and to
query planning in databases [44].

First, our implementation uses templates for the subtreaties,
similar to the local treaty templates used in the homeostasis
protocol [45]. Templates are predicates with parameters to be
filled with specific values. The form of subtreaty templates is
determined by the form of the derived metric and the form
of its treaty’s predicate. For example, if the derived metric
is a sum and the treaty’s predicate is a threshold, as in the
voting example, the system may choose subtreaty templates
specifying thresholds on each summand. Thus, in the voting
example in Section 3, each subtreaty γ uses a template of the
form “≥ rγ t + kγ ”, with parameters rγ and kγ . Alternatively,
if the derived metric is a minimum of other metrics and the
treaty predicate is the strict equality min(x ,y, z) = 5, the

6

templates chosen by the system could be an equality for the
current minimum metric argument, and thresholds for the
other arguments. If x were the current minimum argument,
subtreaty templates would take the form x = xγ , y ≥ yγ and
z ≥ zγ .

Second, the parameters in subtreaty templates are filled
with specific values chosen by solving a constrained opti-
mization problem. This problem corresponds to maximizing
the predicted time until any subtreaty will become invalid,
subject to constraints that ensure the subtreaties imply the
original treaty holds. Predictions for how long each subtreaty
will hold are based on the predictive model discussed in Sec-
tion 4.4.2 This constrained optimization problem ensures the
subtreaties chosen are expected to avoid synchronization as
long as possible according to the predictive model.
For example, consider the two-station voting scenario in

Section 3, where the first and second stations have respective
marginsm1 andm2, with estimated velocities v1 and v2, and
noise σ1 and σ2. With the treatym1 +m2 ≥ 0 and templates
m1 ≥ r1t + k1 and m2 ≥ r2t + k2, the system solves the
optimization problem:3

argmax
r1,r2,k1,k2

(min(t1, t2))

where m1 ± σ1
√
t1 +v1t1 = r1t1 + k1 r1 + r2 ≥ 0

m2 ± σ2
√
t1 +v2t1 = r2t1 + k2 k1 + k2 ≥ 0

In other words, parameters r1, r2,k1,k2 are solved for to max-
imize the shorter of two projected expiration times t1 and
t2. The projected expiration times are times when the model
predicts the metric values will coincide with the thresholds,
as described by the constraints on the left. The right two
constraints ensure that the resulting choices of parameters
are such that the original treaty is valid.
For simple cases, our implementation directly solves for

parameters; for example, the treatymin(x ,y) ≥ 5 using tem-
plates x ≥ aγ and y ≥ bγ has optimal parameter value 5 for
both aγ and bγ . In more complex cases, our implementation
solves for parameters using a numerical optimization library.

4.6 Expiration
The general form of a predictive treaty in Equation (1) in-
cludes an expiration time texpiry. This component is useful for
enforcing application-level predicates that include an expira-
tion time, as in the case of warranties [33]. However, there is
a deeper reason why expiration times are needed.
As discussed in Section 3, a time-dependent predictive

treaty can transfer slack continuously from positively biased
local treaties to negatively biased ones. A threshold predictive
2Of course, alternative predictive models can be used for this process. What
matters is that there is a way to predict how long a treaty will hold and a
way to set up and efficiently solve the constrained optimization problem.
3For clarity, we elide some rewriting of these formulae to reduce the param-
eter space, such as requiring equality for the final two conditions, and elide
checks to ensure that assumptions hold, such as the treaty being currently
valid.

2 4 6 8 10

5

10

m(s)
at t = 0

∝ σ
√
t

m(s) ≥ 0.5t + 2

Time (t)M
et
ric

va
lu
em

(s)

Figure 4. A positively biased predictive treaty must have an
expiration time. The red parabolic curve suggests the enve-
lope of likely metric values over time. Hedging the expiration
time (the lower dashed line) leaves room for negative updates.

treaty is positively biased at time t if the termb(t) is increasing
over time, presumably because the workload updates are
also positively biased. In the simple case of a linear bound
b(t) = rt + c , the sign of r determines the treaty bias.

Predictive treaties that are not positively biased remain
valid in the absence of updates to the state s because the
bound b(t) remains fixed or moves away from the metric
value. Therefore, these predictive treaties can be enforced
by forcing synchronization when updates arrive that would
require them to be retracted. This synchronization may cause
the global assertion to fail but its failure will be serializable
and observations of state will remain consistent.
Positively biased predictive treaties, however, build in an

expectation that incoming updates generate slack in the un-
derlying metric. Consequently, if updates cease, a positively
biased treaty becomes invalid simply through the passage of
time. In general, there is no way to prevent such invalidations.
For example, Figure 4 shows a predictive treaty with the

formm(s) ≥ 0.5t +2, corresponding to the gray diagonal line.
The metric is required to stay above this line. At time 0, the
metric has value 6. Absent any updates, the treaty becomes
invalid at time 8, so synchronization-free enforcement of the
treaty requires that the value of texpiry be at most 8.
Hedging. It would be safe in this example to use 8 as texpiry,
but updates could not be safely accepted by the node if they
reduced the metric below its initial value; synchronization
would be required. Any reduction below the initial value
could make the predictive treaty become invalid before the
promised expiration date. To allow some slack-reducing up-
dates to occur without synchronization, the expiration time
can be artificially shortened, as suggested by the lower dashed
line in the figure. The amount of expiration-time hedging
should depend on the noise parameter σ , to balance the cost
of making the expiration time too short against the possible
cost of synchronization arising from slack-reducing updates.
Asynchronous extensions. As time passes, a node managing
a positively biased predictive treaty expects updates which
increase the expiration time that it could promise to other

7

nodes. Importantly, these extensions can be communicated
asynchronously. The managing node can at any time send out
extension messages to other nodes, increasing the expiration
time of the predictive treaty. There is no need for recipients
to acknowledge the message or for the sender to wait for a
response; a lost or delayed message may lead to unnecessary
synchronization but cannot cause inconsistency. Sending ex-
tension messages is also discretionary. To avoid gratuitous
overhead, the sending node can wait until just before the pre-
viously advertised expiration time to send out an extension
message. Because such messages do not incur round-trip de-
lays and do not delay client transactions, we do not consider
them to be synchronizations.

5 Using Predictive Treaties
Predictive treaties and metrics enable complex, efficient im-
plementations for distributed applications. The API is simple
and intuitive, however.

5.1 Programming with Treaties and Metrics
Part of the appeal of predictive treaties is that they support a
simple programming interface. To demonstrate this simplic-
ity, Figure 5(b) gives the top-level code for the voting example,
using several supporting definitions from Figure 5(a). The
function winner() defines the top-level computation: it com-
putes the election winner while memoizing the result by
generating a treaty that can be used later to check the result.
Under the covers, the implementation enforces the underly-
ing predictive treaties to keep this result valid for as long as
possible, avoiding recomputation and synchronization.
The method winner() computes a Metric for the mar-

gin between the candidates across a set of voting stations,
using a helper method margin() that builds a metrics tree
by partitioning the voting stations and recursively comput-
ing the sub-margins for those stations, combining the results
into a single metric using the plus operation. Depending
on the sign of the resulting margin, winner() then uses
getTreaty() to generate a predictive treaty for either the
returned metric or its negation (using the times(-1) opera-
tion). The parameters to the call to getTreaty() represents
the lower bound on the value, set to 0 here. Figure 6 shows the
tree of metrics used in the voting example. The association
between the returned winner and the treaty can be treated
as enforcing assertions of the form f(s) = y.

Figure 5(a) defines the interfaces for objects of type Treaty,
TreatyStatement, and Metric. After a treaty is created,
valid() returns true until the treaty expires. Metric objects
provide methods for computing their value(), for estimating
their velocity() and noise(), and for obtaining derived
metrics. The method policy(stmt) automatically creates
subtreaties to enforce a predictive treaty enforcing the given
statement on themetric’s value(), using subtreaty templates

interface TreatyStatement {

// For internal use

boolean check(Metric m);

}

interface Treaty {

// For client use

boolean valid ();

}

interface Metric {

// For client use

double value ();

Metric plus(Metric other); // Makes SumMetric

Metric times(double scalar); // Makes ScaledMetric

Metric minus(Metric other); // Same as x+(-1*y)

Metric min(Metric other); // Makes MinMetric

Treaty getTreaty(TreatyStatement stmt);

// For internal use

double velocity ();

double noise ();

Set <Treaty > policy(TreatyStatement stmt);

}

(a) Treaty and Metric interfaces.
Pair <String , Treaty > winner(String u, String v) {

Metric diff = margin(u, v, allStations);

if (diff.value() >= 0)

return new Pair <>(u,

diff.getTreaty(new LowerBound (0));

return new Pair <>(v,

diff.times (-1). getTreaty(new LowerBound (0));

}

Metric margin(String u, String v, List <Station > ds){

int n = ds.size ();

if (n == 1) {

Station d = ds.get (0);

return d.votesFor(u).minus(d.votesFor(v));

}

int mid = n / 2;

Metric fst = margin(u, v, ds.subList(0, mid));

Metric snd = margin(u, v, ds.subList(mid , n));

return fst.plus(snd);

}

(b) Voting example.
Figure 5. Example: memoization with predictive treaties.

plus

minus

votesFor(u)

SumMetric

DirectMetric

votesFor(v)

DirectMetric

SumMetric

SumMetric

* -1

…
ScaledMetric

Figure 6. Metrics tree created by example code

8

and numerical optimization as discussed in Section 4.5. If no
subtreaties are returned, the statement is enforced directly.
In our example, votes at an individual station are tracked

using metrics that can be updated directly by the applica-
tion. Votes across stations are tracked using SumMetrics and
ScaledMetrics (produced by the plus and minus opera-
tors), which use the methods velocity() and noise() to
divide up slack proportionally between their sub-metrics.

5.2 Stipulated Commit
To reduce the overhead of creating and maintaining predic-
tive treaties, it can be better to beg forgiveness than to ask
permission. The predictive treaties programming interface
converts logical conditions that the programmer wants to
test into treaties that are monitored and enforced. However,
creating and maintaining a treaty (“asking permission”) has
a cost that is not worth paying if the treaty cannot be reused
enough. Unfortunately, programs as written often test logical
conditions that are not worth promoting into treaties.
One problematic pattern arises when an application per-

forms certain updates only if a postcondition would hold
afterward, but where the success of the update depends on
varying input. For example, in a banking application, a with-
drawal from an account might be allowed only if the final
account balance is nonnegative. Traditionally, a programmer
would enforce such a postcondition by checking a sufficiently
strong precondition before performing the update. For exam-
ple, the banking application might guard the withdrawal with
code like the following:

if (balance - amount >= 0)

balance -= amount;

However, this code does not expose a reusable predicate:
first, the guard condition depends on the quantity amount,
which may vary from request to request; second, when the
balance is low, the guard condition may be immediately vio-
lated by the update.
To make reusable treaties easier to express, the program-

ming interface allows the specification of stipulations, post-
conditions that must hold after some set of updates is applied.
The updates are performed optimistically, but if the resulting
state does not satisfy the stipulations, the updates are rolled
back and are not committed (“begging forgiveness”). The
application then has the opportunity to perform alternative
actions. In the banking example, it is enough to check that
a treaty of the form balance ≥ 0 would still be valid after
the update to the balance. This predicate is reusable because
it does not mention the amount being withdrawn, and it is
never invalidated by withdrawals.

Actual code for the withdrawal transaction using stipulated
commit is shown in Figure 7. In this code, the account balance
is sharded across two sites in balance_us and balance_eu,
which may become negative as long as their sum (balance)
remains nonnegative. The keyword atomic starts a nested

Metric balance_us , balance_eu;

Metric balance = balance_us.plus(balance_eu);

int withdraw(int amount) {

atomic {

balance.requireStipulation(new LowerBound (0)));

// withdraw from the appropriate shard

withdraw_locally(amount);

return amount;

} catch (StipulationFailure f) {

return 0;

}

}

Figure 7. Using stipulated commit to withdraw money from
a sharded balance.

transaction that aborts and rolls back all of its updates if an
exception occurs.
In cases where an existing treaty already asserts the post-

condition, it is enough to check that the enforcement logic,
described in Section 4.2, does not determine that the treaty
is violated by this transaction. Thus, stipulated commit uses
treaties to avoid synchronization using the same underlying
mechanisms. On the other hand, if there is no active treaty
for a satisfied postcondition, a treaty is automatically cre-
ated and activated, ensuring that later transactions can avoid
synchronization in their postcondition checks.

While stipulated commit relies on a rollback mechanism, it
has a subtle difference from previous mechanisms for nested
transactions: reads performed when checking the treaty state-
ment postcondition must be treated as part of the parent
transaction, even if the postcondition fails. This ensures the
serializability of application logic that depends on the failure.

6 Implementation
We implemented predictive treaties and the API described in
Section 5 on top of Fabric [32]. Fabric is a persistent program-
ming language that supports nested, distributed transactions.
Fabric’s security features are not germane to this work, but its
support for linearizable multistore transactions and optimistic
concurrency control make it a good fit for the geodistributed
setting. However, we made a few changes to Fabric to support
predictive treaties.
Ignoring comments and blank lines, the implementation

added about 5,000 lines of FabIL and Java code to implement
the API and changed about 4,000 lines of Java code in the
Fabric runtime.
Checking the expiration of predictive treaties in 2PC. Fabric’s
transactions are strictly serializable, so a transaction’s reads
andwrites behave as if they happen atomically in a single step.
Because a predictive treaty’s validity depends on the relation
between texpiry and the current time, the use of a predictive
treaty in a transaction must behave as if it was performed
at the time the transaction was committed. Therefore, the

9

transaction protocol must determine for each transaction a
commit time that respects strict serializability.

Our implementation sets the commit time of a transaction
to be the latest time at which the prepare phase finished read-
and write-locking the persisted objects at any of the stores.
This commit time respects strict serial ordering because it is
guaranteed to be within the period of time the transaction
appears to have occurred and will be strictly before or after
the times other (possibly conflicting) transactions are applied.
We modified Fabric’s prepare-phase responses to include

the time after all objects at the store have been prepared.
The coordinator is modified so that, if there are no failed
prepares, the latest of these timestamps is compared against
the expiration times of predictive treaties that appear valid
to the transaction. If all predictive treaties expiration times
are later than the commit time, the coordinator sends out a
commit message. Otherwise, an abort message is sent and
the coordinator retries the transaction. During the retry, the
new attempt will either observe the treaties used as invalid
or updated by another transaction with longer expiries.

7 Evaluation
Our evaluation aims to address several questions:

1. Do predictive treaties reduce synchronization? (§3)
2. How does bias difference affect synchronization? (§7.1)
3. How does this scale with the number of sites? (§7.1)
4. What happens when the model’s assumption of a stable

update trend is violated? (§7.1)
5. Does hierarchy reduce synchronization costs? (§7.1)
6. Do predictive treaties work on realistic workloads?

(§7.2)
7. How does performance comparewith prior related tech-

niques? (§7.2, 7.3)
8. Does stipulated commit help performance? (§7.3)
The first question is answered by our initial results given

in Section 3: using predictive treaties in the voting example
can significantly reduce synchronization. We now explore
the remaining questions.

7.1 Voting Microbenchmark
In Section 3, we implemented the voting example as a mi-
crobenchmark. We make further use of the microbenchmark
to investigate questions 2–5.
Behavior with different biases. We ran a series of variations
of the voting example in which we varied the voting bias
of the pro-A station to see how the results change with the
overall bias in the system. In each experiment, the pro-B
station is biased with 48% of votes for A, as in the previous
experiment, and the pro-A station prefers A at 56% and 60%.
As in Section 3, we run votes for 30 seconds and then create
a treaty that asserts the current winner is in the lead. We
then measure the time that elapses until either a query or
voting transaction must synchronize with a remote station,

103 104 105
0

0.2

0.4

0.6

0.8

1

Milliseconds before first synchronization

Fr
ac
tio

n
of

Tr
ia
ls

SE (60% A)
SO (60% A)
PT (60% A)
SE (56% A)
SO (56% A)
PT (56% A)

Figure 8. CDF of time until first synchronization under the
three strategies static equal (SE), static optimal (SO), and
predictive treaties (PT), for slack allocation with varying bias
at the first station. Stations received 100 votes per second.

stopping after 400 seconds if there are no synchronizations.
This measured time captures how often the voting application
would require client transactions to synchronize.

The results are shown in Figure 8. When the overall bias
of the system trends toward favoring neither candidate, there
is less time between synchronization for all strategies. This
occurs because the expected margin between the two can-
didates is lower and therefore there is less slack to allocate
across the two sites. With predictive treaties, synchronization
is avoided entirely when trends are stable, even in less biased
scenarios. In nearly all cases where the trials hit the cutoff
time, the system state was such that the treaties would con-
tinue to hold indefinitely; slack was increasing in all stations,
reducing the likelihood of synchronization.
Scaling with number of sites. To see how our approach scaled
with the number of voting stations, we ran additional com-
parisons using 4 and 8 voting sites. Each additional pair of
voting stations had the same biases and voting rates as the
two stations in the previous experiment, ensuring that the
overall system bias was the same, 54% votes for candidate
A overall, while the voting rates scaled with the number of
stations. The measurement is the same as before: the distri-
bution of time from the treaty being created until a client
transaction needed to synchronize with a remote station.
The results of this experiment are shown in Figure 9. For

static strategies, the time until synchronization is required
with either static strategy falls as the number of stations
increases. With predictive treaties, few trials ever synchro-
nize even in the largest configuration. This is because the
predictive treaties are time-varying and implicitly shift slack.
Adapting to changing update trends. Predictive treaties are
extremely effective in avoiding synchronization in scenarios
where updates exhibit a stable trend. This is the assumption
of our predictive model: past trends in updates can be used to
predict future behavior. However, in many realistic workloads
this might not be the case: a video may suddenly go viral or

10

103 104 105
0

0.2

0.4

0.6

0.8

1

Milliseconds before first synchronization

Fr
ac
tio

n
of

Tr
ia
ls

SO4
SO8
PT4
PT8

Figure 9.CDF of time until first synchronization in the voting
system under static optimal (SO) and predictive treaty (PT)
strategies for slack allocation. Each strategy is measured with
4 and 8 stations. With predictive treaties, synchronization is
rarely needed.

0 100 200 300 400 500 600 700 800 900

200
400
600
800

Seconds into Run

La
te
nc
y
(m

s) PT vote 99th
PT query 99th

Figure 10. 99th percentile vote and query latencies per sec-
ond of 2-station adaptivity test.

the underdog candidate’s voters show up in strength later in
the day. To evaluate how well predictive treaties adapt to a
sudden change in update trends, we ran a scenario where the
bias in voting suddenly changes after a period. We started
the system with 2 stations and an overall bias of 54% pro-A
and ran it for 10 seconds of warmup, voting only, followed by
2 minutes with querying. Then, clients flip the voting bias to
a new overall bias of 46% pro-A, which we ran for another 13
minutes. During this period, B is expected to pull ahead of A.
In this and following experiments, network latencies be-

tween locations are set to simulate round-trip times (RTT)
between different Amazon EC2 regions, based on real latency
data from Roy et al. [45]. This allows us to validate system
behavior under realistic geodistributed conditions. The RTT
between each pair of regions ranges between 64 and 372 ms.
In Figure 10, we see the results of this experiment with

2 stations using predictive treaties measuring the 99th per-
centile latencies of votes and winner queries throughout the
run. After the shift in bias, the votes start to tip the margin
in favor of B. During this tipping period votes take longer
because they must check whether they require retractions
for the pre-existing treaties, stating that A is still the winner,
and queries take longer as the treaties enforcing the previous
result are being retracted. However, eventually the system
stabilizes to a new bias and winner, and tail latencies become

0 100 200 300 400 500 600 700 800 9000

2,000

4,000

6,000

Seconds into Run

La
te
nc
y
(m

s) Flat PT votes 99th
Hierarchical PT votes 99th

Figure 11. 99th percentile vote and query latencies for 4-
station adaptivity test with and without hierarchical treaties.
Hierarchy helps avoid large latency spikes.

relatively stable again, with occasional spikes to adjust to
new subtreaties. Thus, we see that predictive treaties are able
to adapt to changes in bias.
Benefits of hierarchical structure. Another feature of predic-
tive treaties relevant to adapting to changes in bias is that
predictive treaties can be constructed hierarchically. Hierar-
chical structures allows updates to avoid renegotiating the
top-level treaty whenever it violates a local treaty, reducing
the number of locations the update synchronizes with. To
demonstrate the effectiveness of hierarchy, we ran the same
experiment but with 4 stations, with station 3 similar to 1 but
in Ireland and station 4 similar to 2 but in Singapore.
The result of this comparison, in Figure 11, shows that

the maximum 99th percentile latency per second of vote op-
erations rises much higher for the flat organization. In the
flat organization, all synchronization occurs across all 4 sites,
increasing peak latencies and creating more contention with
other transactions. However, the hierarchical organization
allows synchronization to sometimes be localized to pairs of
sites that are nearby each other, reducing peak latencies.

7.2 Distributed Top-k Monitoring
Babcock and Olston [6] showed how to efficiently monitor
the top k items from a set with sharded counts, by track-
ing the validity of constraints across the distributed system.
We implemented a simpler alternative top-k monitoring algo-
rithm, taking advantage of predictive treaties to automatically
construct and maintain related constraints.
In this scenario, counts for a set of identifiers are incre-

mented periodically across a number of geodistributed servers;
the goal is to be able to quickly query the identities of the top
k items in the set. Our algorithm introduces a pseudo-item
that we call the marker. Its count always lies between that of
the k-th and k + 1-th items. The algorithm maintains global
predicates asserting that the items in the current top k all are
above the marker, and that the rest of the items are all below.
Our framework automatically maintains these predicates.
To evaluate this algorithm, we used a benchmark based

on the HTTP request logs for the 1998 FIFA World-Cup web-
site, which was served from 33 servers distributed across 4
regions [5]. This benchmark has been used in related work [6,

11

0 500 1,000 1,500 2,000 2,500 3,000 3,5000
2,000
4,000
6,000
8,000
10,000

Logged request time (s)

To
ta
ls
yn

ch
ro
ni
za
tio

ns

Babcock and Olston
Predictive treaties

Figure 12. Using synchronizations to compare Babcock and
Olston’s top-k algorithm with using predictive treaties.

20]. For comparison purposes, we implemented the more com-
plex algorithm of Babcock and Olston in the Fabric system.
Unlike prior work, both implementations guarantee strict
serializability for updates and queries.
We created a top-level predictive treaty that queried for

the 20 most popular pages. As in the original workload, 33
servers served the 4 regions, each logging its received HTTP
requests. We ran a one-hour period of the request logs, with
one transaction per page hit logged and a total of 84,398
requests processed. A client requested the current top 20 page
identifiers every second, and both implementations ensured
the top-20 set was up to date at all times.
Figure 12 shows the synchronizations required over time

by our algorithm, compared with the Babcock and Olston
algorithm. The results show that our algorithm synchronizes
less by the end of the experiment, delivering better perfor-
mance than that of a more complex algorithm specialized
to the problem. The treaty implementation was simpler: its
update routine was 100 lines of code versus 210 lines of code
for our implementation of Babcock and Olston’s algorithm.

7.3 Modified TPC-C
The TPC-C benchmark allows us to compare with prior work
and to validate that our approach scales to a larger benchmark.
TPC-C is an OLTP4 benchmark that simulates a system for
order entry and fulfillment.

For purposes of comparison, our variant of TPC-C is based
on the one used by Roy et al. [45]. We similarly shard the data-
base across multiple stores, with each item’s stock sharded
across the stores. We make the realistic assumption that items
are ordered with a nonuniform popularity, skewed across
both items and the locations where they are ordered.
As in Roy et al., the database is initialized with 10 ware-

houses, 10 districts per warehouse, and 100 customers per
district. There is an inventory of 1,000 items, for a total of
100,000 Stock objects. Initial stock levels are set randomly
between 0 and 100.5 There are no orders in the initial state.

4OLTP (Online Transaction Processing) applications handle online transac-
tion requests from external clients.
5Random values are drawn from a uniform distribution.

Each store, along with an associated 8 clients, experiences
latency simulated to act like one of the EC2 regions.
The workload consists of two of the TPC-C transactions,

based on the two potentially distributed operations of the
three most frequent transactions in TPC-C. The NewOrder
transaction orders a random quantity (between 1 and 5) of a
random item from a random district at a random warehouse.
If there is insufficient stock to meet the order quantity, item
stock is first replenished by adding 100 more items before
decrementing the stock amount. The Delivery transaction
enqueues the oldest order at a random warehouse and district
for deferred processing. A thread at each warehouse later
fulfills the order and charges the appropriate customer. Except
when comparing our baseline with the performance reported
by Roy et al., we do not include the Payment transaction, the
remaining of the three most common transactions. Payment
transactions do not require synchronization; they pad out
the workload with operations that don’t have read–write
conflicts with the other two transactions.

Like Roy et al., we avoid synchronization on every NewOrder
transaction by relaxing the requirement for globally mono-
tonic order IDs. Instead, they are generated monotonically on
a per-shard basis. To determine the oldest order, the Delivery
transaction requires a total ordering; we obtain one by break-
ing ties with the shard ID. Like Roy et al., we report NewOrder
latencies as a distribution plot that captures the core system
performance; throughput is directly affected by how long
operations take, longer latencies leads to more bottlenecks
and contention in the system producing worst throughput.
Furthermore, these plots help identify the percentage of or-
ders which coordinated or experienced contention with other
transactions, where latency is nontrivial.
Lazy balancing baseline. For a performance baseline, we use
a simple algorithm for sharded TPC-C orders that we call
lazy balancing. It tries to fulfill orders entirely locally, but
when the current store lacks enough stock, it synchronizes
with the other stores to obtain the missing stock, and divides
remaining stock equally among the stores. Lazy balancing
does not pay any cost for setting up treaties, and performs
especially well when there is no bias across stores, because
all stores run out of stock around the same time and hence,
treaties do not offer much performance benefit.
To determine whether lazy rebalancing is a competitive

baseline, we compared it against the results published for
the homeostasis protocol by Roy et al. [45]. When running
the same TPC-C workload with the same network configu-
ration they reported, lazy rebalancing achieves a 90th per-
centile NewOrder latency of 130ms and a 99th percentile
of 200ms, whereas Roy et al. reported a 90th percentile of
roughly 260 ms and a 99th percentile of well over 1 second.

12

0.8 0.85 0.9 0.95 10

200

400

600

800

1,000

Fraction of NewOrder Transactions

Ne
wO

rd
er

La
te
nc
y
(m

s) Predictive treaties
Predictive treaties, no stipulated commit
Lazy balancing

Figure 13. CDF of latencies for TPC-C NewOrder transac-
tions, run on two sharded stores with geographic round-trip
latency, with 50% of orders going to hot items uniformly
across sites. Stipulated commit allows performance of predic-
tive treaties to be comparable to that of lazy balancing.

The next two experiments involve a mix of 95% NewOrder
and 5% Delivery transactions. The system is given 10 min-
utes of warm-up time so caches heat up andmodel parameters
reach a steady state, followed by 10 minutes of measurement.
Benefits of stipulated commit. To demonstrate the benefits of
stipulated commit, we implemented one version of the bench-
mark using stipulations, similar to the withdrawal example
in Section 5.2, and one using treatied preconditions; both
enforce the invariant that total stock is positive for all items.
These treaties allows clients to remove stock from the local
region without synchronizing to ensure there was enough
stock to accommodate oversales across the entire database.
We compare the performance of these two implementa-

tions with lazy balancing in a scenario with globally popular
items: 1% of the items are ordered 50% of the time. The sym-
metry of this scenario makes it favorable to lazy balancing,
but Figure 13 shows that in a 2-shard scenario, predictive
treaties using stipulated commit perform similarly.6 Without
stipulated commit, the latencies are higher with predictive
treaties. Stipulated commit allows the application to avoid
creating treaties tailored to specific order amounts.
Skewed popularity. We also evaluated a second scenario to
which predictive treaties are particularly well suited: skewed
popularity across shards. In these experiments, each replica
has a share of “locally hot” items, and a majority of orders on
each replica go to its locally hot items. This results in a skewed
distribution of updates for each item across its sharded val-
ues, with most orders for each item happening at the replica
where it is locally hot. We see the results for a skewed order
distribution in Figure 14. Predictive treaties allow the system
to adapt to uneven popularity across replicas, reducing syn-
chronization over a lazily balanced implementation. With 2
6 To facilitate comparison with prior work [45], the CDF is oriented with
probability along the horizontal axis, so the area under the curve is propor-
tional to expected latency.

0.75 0.8 0.85 0.9 0.95 10

500

1,000

1,500

2,000

2,500

3,000

Fraction of NewOrder Transactions

Ne
wO

rd
er

La
te
nc
y
(m

s) T 2 rep 70%
LB 2 rep 70%
T 2 rep 90%

LB 2 rep 90%
T 5 rep 70%

LB 5 rep 70%

Figure 14. CDF of latencies for TPC-C NewOrder transac-
tions with skewed order distribution across 2 and 5 replicas
using lazy balancing (LB) and treaties (T).

replicas and 70% of orders going to locally hot items at each
replica, the lazily balanced implementation synchronizes on
10.5% of orders, while the treaties implementation only syn-
chronizes on 8%. In the highly skewed case where 90% of
orders go to locally hot items, this gap in synchronization
widens: the treaties implementation synchronizes on only
7.5% of orders, while lazy balancing synchronizes on 12.5%.

7.4 Discussion
Predictive treaties are particularly effective when treaties’
slack grows over time, as in the voting and top-k bench-
marks. In this case, predictive treaties improve on previous
techniques by rebalancing slack in the background, avoiding
synchronization during client operations.

When, as in TPC-C, global slack does not grow, slack can-
not be continuously rebalanced. However, the results show
that predictive treaties still have benefits. The predictive
model allows the system to automatically identify and adapt
to the trends and distribution of slack across nodes.
In the unfavorable case where the workload violates the

predictive model’s assumption of stable trends, the system
can compensate by detecting and adapting to new trends.
Organizing treaties hierarchically helps reduce overheads in
these chaotic scenarios by restricting synchronizations to
small local subsets of the nodes when possible.

8 Related Work
Many prior projects have investigated methods for avoiding
contention and synchronization in applications by leveraging
application-specific semantics. Even in single-store systems,
the notion of using higher-level semantics to better man-
age contention has been proposed, including hierarchical
reader-writer locking [23] and predicate locks [19]. Partic-
ular attention has been paid to this idea in the distributed
application setting, with recent work trying to identify rules
for when synchronization is unnecessary [7].

13

Predictive treaties are designed to improve performance of
applications built on top of strongly consistent systems by en-
forcing application invariants. Some work instead starts with
efficient systems with weaker consistency guarantees, such
as eventual [53] or causal consistency [34], and introducing
techniques such as reservations [43] or CRDTs [9, 47, 48] to
enforce stronger guarantees where necessary.

In particular, Indigo [8] allows creating and using reserva-
tions to enforce programmer-specified application invariants
in a causally consistent setting. Unlike predictive treaties,
Indigo’s invariants are statically specified at compile time.
They are limited to predicates expressible in first-order logic;
for example, Indigo’s annotations could not enforce a graph
connectedness invariant because it is not expressible in first-
order logic [18] without further restrictions on the applica-
tion, such as knowing all vertices in the graph at compile
time. Predictive treaties do not have this limitation because
they are generated at run time.

Like predictive treaties, some work focuses on monitoring
distributed results that may not be invariant for the lifetime of
the application, such as results of computation on stored state
or the values seen in a stream [16]. Some of this work has
examined thresholds on vector values [27, 49] and predictive
models [22], but focuses on settings like sensor networks
where strong consistency is not required.

Leveraging similar insights to anticipate how remote values
will continue to behave, distributed simulations and games
use dead reckoning [39, 50, 51]. This technique extrapolates
the last known state and behavior of remote objects to per-
form tasks such as generating visuals. Dead reckoning is
useful when immediately computing a inconsistent result
is better than blocking the program to ensure a consistent
result. In contrast, predictive treaties use a predictive model
to make consistency cheaper.

Similar to the goal of metrics for providing a basis of high
level strong guarantees on the system state, Conits [54] aims
to provide high level consistency guarantees and systems like
Pileus [52] offer APIs to directly specify SLA-style guaran-
tees on reads and updates. These guarantees are primarily
concerned with consistency of individually read and updated
items whereas predictive treaties are intended to construct
high-level semantic guarantees.
In settings that require stronger consistency guarantees,

problems such as monitoring the top k items in a ranked
listing [6], thresholds on a single quantity [38], or thresh-
olds on linear combinations [10, 45] have been studied. Prior
work similarly divides a slack-like resource between nodes.
MDCC [28] applies similar techniques to provide better con-
currency for georeplicated values, processing transactions
that commute without determining an explicit ordering. How-
ever, this work is focused on either specialized scenarios or
guarantees on individual objects and has not leveraged pre-
dictive models nor time dependence to shift slack.

Warranties [33], like predictive treaties, allow for compo-
sitional predicates built from arbitrary computations. These
computations were more general than metrics but assertions
are limited to state on a single storage node. Like predictive
treaties, warranties have time limits; however, once created,
they cannot be revoked before they expire.

Both predictive treaties and warranties leverage composi-
tionality to ensure that enforcement checks recompute only
the subcomputations possibly affected by an update. Recom-
puting only the affected subcomputations to update a result
has been explored in work on incremental self-adjusting com-
putation [1, 12]. Incoop [12] applies this technique to Hadoop
clusters. RDDs [55] use a similar technique for a more lim-
ited class of distributed applications in a cluster. In databases,
this technique is used for incremental view maintenance [24],
and TxCache [42] offers similar functionality for web appli-
cations. However, these techniques were not designed for
high-latency, geodistributed settings.

9 Conclusion
Predictive treaties and metrics are new abstractions for build-
ing applications that can benefit from the ability to enforce
assertions over their geodistributed state. Predictive treaties
are defined in terms of metrics that can be maintained locally
and computed hierarchically. Coordination across geographic
distances can thereby be reduced. Our results show that these
new abstractions permit programs to be straightforwardly
built in terms of predictive treaties and metrics, with signifi-
cant performance benefits.

Acknowledgments
Many people have offered useful suggestions on this work or
its presentation here, including Matthew Milano, Chinawat
Isradisaikul, Isaac Sheff, Natacha Crooks, Matthew Burke, Kai
Mast, EthanCecchetti, Yizhou Zhang, David Bindel, Christoph
Koch, Rolph Recto, Rodrigo Rodrigues, Soumya Basu, Drew
Zagieboylo, and the anonymous reviewers from the program
committee and shadow program committee.
We acknowledge support from NSF grants 1717554 and

1253165 and a National Defense Science and Engineering
Graduate (NDSEG) Fellowship. Foster is also a principal re-
search engineer at Barefoot Networks.

References
[1] Acar, U. A., Ahmed, A., and Blume, M. Imperative self-adjusting com-

putation. In 35th ACM Symp. on Principles of Programming Languages
(POPL) (2008), pp. 309–322.

[2] Adya, A., Gruber, R., Liskov, B., and Maheshwari, U. Efficient opti-
mistic concurrency control using loosely synchronized clocks. In ACM
SIGMOD International Conference on Management of Data (SIGMOD)
(San Jose, CA, May 1995), pp. 23–34.

[3] Adya, A., and Liskov, B. Lazy consistency using loosely synchronized
clocks. In 16th ACM Symp. on Principles of Distributed Computing (Aug.
1997), PODC ’97, pp. 73–82.

14

[4] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. Compilers: Prin-
ciples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., 2006.

[5] Arlitt, M., and Jin, T. A workload characterization study of the 1998
world cup web site. IEEE network 14, 3 (2000), 30–37.

[6] Babcock, B., and Olston, C. Distributed top-k monitoring. In Proceed-
ings of the 2003 ACM SIGMOD International Conference on Management
of Data (New York, NY, USA, 2003), SIGMOD ’03, ACM, pp. 28–39.

[7] Bailis, P., Fekete, A., Franklin, M. J., Ghodsi, A., Hellerstein, J. M.,
and Stoica, I. Coordination avoidance in database systems. PVLDB 8
(2014), 185–196.

[8] Balegas, V., Duarte, S., Ferreira, C., Rodrigues, R., Preguiça, N.,
Najafzadeh, M., and Shapiro, M. Putting consistency back into
eventual consistency. In Proceedings of the Tenth European Conference
on Computer Systems (New York, NY, USA, 2015), EuroSys ’15, ACM,
pp. 6:1–6:16.

[9] Balegas, V., Serra, D., Duarte, S., Ferreira, C., Shapiro, M., Ro-
drigues, R., and Preguiça, N. Extending eventually consistent cloud
databases for enforcing numeric invariants. In IEEE Symp. on Reliable
Distributed Systems (SRDS) (Sept. 2015).

[10] Barbará-Millá, D., and Garcia-Molina, H. The demarcation pro-
tocol: A technique for maintaining constraints in distributed database
systems. The VLDB Journal 3, 3 (July 1994), 325–353.

[11] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concurrency
Control and Recovery in Database Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1987.

[12] Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U. A., and Pasqini,
R. Incoop: MapReduce for incremental computations. In ACM Symp.
Cloud Computing (Oct. 2011).

[13] Brown, R. G. Exponential smoothing for predicting demand. Operations
Research 5, 1 (1957), 145–145.

[14] Chong, C.-Y., and Kumar, S. P. Sensor networks: Evolution, opportu-
nities, and challenges. Proceedings of the IEEE 91, 8 (2003), 1247–1256.

[15] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman,
J. J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., et al.
Spanner: Google’s globally distributed database. ACM Transactions on
Computer Systems (TOCS) 31, 3 (2013), 8.

[16] Cormode, G. The continuous distributed monitoring model. ACM
SIGMOD Record 42, 1 (May 2013), 5–14.

[17] Durrett, R. Probability: Theory and Examples, 4th ed. Cambridge
University Press, 2010.

[18] Ebbinghaus, H., Flum, J., and Thomas, W. Mathematical Logic. Un-
dergraduate Texts in Mathematics. Springer New York, 1996.

[19] Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L. The
notions of consistency and predicate locks in a database system. Comm.
of the ACM 19, 11 (Nov. 1976), 624–633. Also published as IBM RJ1487,
December 1974.

[20] Garofalakis, M., Keren, D., and Samoladas, V. Sketch-based geomet-
ric monitoring of distributed stream queries. Proceedings of the VLDB
Endowment 6, 10 (Aug. 2013), 937–948.

[21] Geng, Y., Liu, S., Yin, Z., Naik, A., Prabhakar, B., Rosenblum, M.,
and Vahdat, A. Exploiting a natural network effect for scalable, fine-
grained clock synchronization. In 15th USENIX Symp. on Networked
Systems Design and Implementation (NSDI) (Apr. 2018), pp. 81–94.

[22] Giatrakos, N., Deligiannakis, A., Garofalakis, M., Sharfman, I.,
and Schuster, A. Prediction-based geometric monitoring over dis-
tributed data streams. In Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data (New York, NY, USA, 2012),
SIGMOD ’12, ACM, pp. 265–276.

[23] Gray, J., Lorie, R., Putzolu, G., and Traiger, I. Granularity of locks
and degrees of consistency in a shared database. In Modeling in Data
Base Management Systems. Amsterdam: Elsevier North-Holland, 1976.
Also available in Chapter 3 of Readings in Database Systems, Second
Edition, M. Stonebraker Editor, Morgan Kaufmann, 1994.

[24] Gupta, A., Mumick, I. S., and Subrahmanian, V. S. Maintaining

views incrementally. In ACM SIGMOD International Conference on
Management of Data (SIGMOD) (1993), pp. 157–166.

[25] Herlihy, M., and Wing, J. Linearizability: A correctness condition
for concurrent objects. Technical Report CMU-CS-88-120, Carnegie
Mellon University, Pittsburgh, Pa., 1988.

[26] Holt, C. C. Forecasting trends and seasonals by exponentially weighted
averages. carnegie institute of technology. Tech. rep., Pittsburgh ONR
memorandum, 1957.

[27] Keren, D., Sharfman, I., Schuster, A., and Livne, A. Shape sensi-
tive geometric monitoring. IEEE Transactions on Knowledge and Data
Engineering 24, 8 (Aug. 2012), 1520–1535.

[28] Kraska, T., Pang, G., Franklin, M. J., Madden, S., and Fekete, A.
MDCC: Multi-data center consistency. In ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems (Apr. 2013).

[29] Lee, K. S., Wang, H., Shrivastav, V., and Weatherspoon, H. Glob-
ally synchronized time via datacenter networks. In SIGCOMM (2016),
pp. 454–467.

[30] Liskov, B. Practical uses of synchronized clocks in distributed systems.
In 10th ACM Symp. on Principles of Distributed Computing (Aug. 1991),
PODC ’91, pp. 1–9.

[31] Liskov, B., Shrira, L., and Wroclawski, J. Efficient at-most-once
messages based on synchronized clocks. ACM Trans. on Computer
Systems 9, 2 (May 1991), 125–142.

[32] Liu, J., George, M. D., Vikram, K., Qi, X., Waye, L., and Myers, A. C.
Fabric: A platform for secure distributed computation and storage. In
22nd ACM Symp. on Operating System Principles (SOSP) (Oct. 2009),
pp. 321–334.

[33] Liu, J., Magrino, T., Arden, O., George, M. D., and Myers, A. C. War-
ranties for faster strong consistency. In 11th USENIX Symp. on Networked
Systems Design and Implementation (NSDI) (Apr. 2014), pp. 513–517.

[34] Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G. Don’t
settle for eventual: scalable causal consistency for wide-area storage
with COPS. In 23rd ACM Symp. on Operating System Principles (SOSP)
(2011).

[35] Marzullo, K. Loosely-Coupled Distributed Services: A Distributed Time
Service. PhD thesis, Stanford University, Stanford, Ca., 1983.

[36] Menth, M., and Hauser, F. On moving averages, histograms and
time-dependentrates for online measurement. In Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering
(New York, NY, USA, 2017), ICPE ’17, ACM, pp. 103–114.

[37] Mills, D. L. Network time protocol (version 3) specification, implemen-
tation and analysis. Network Working Report RFC 1305, Mar. 1992.

[38] O’Neil, P. The escrow transactional method. ACM Trans. on Database
Systems 11, 4 (Dec. 1986), 405–430.

[39] Pantel, L., and Wolf, L. C. On the suitability of dead reckoning
schemes for games. In Proceedings of the 1st Workshop on Network and
System Support for Games (New York, NY, USA, 2002), NetGames ’02,
ACM, pp. 79–84.

[40] Papadimitriou, C. H. The serializability of concurrent database updates.
Journal of the ACM 26, 4 (Oct. 1979), 631–653.

[41] Piantoni, R., and Stancescu, C. Implementing the Swiss exchange
trading system. In Fault-Tolerant Computing, 1997. FTCS-27. Digest
of Papers., Twenty-Seventh Annual International Symposium on (1997),
IEEE, pp. 309–313.

[42] Ports, D. R. K., Clements, A. T., Zhang, I., Madden, S., and Liskov, B.
Transactional consistency and automatic management in an application
data cache. In 9th USENIX Symp. on Operating Systems Design and
Implementation (OSDI) (2010).

[43] Preguiça, N., Martins, J. L., Cunha, M., and Domingos, H. Reserva-
tions for conflict avoidance in a mobile database system. In Proceedings
of the 1st International Conference on Mobile Systems, Applications and
Services (New York, NY, USA, 2003), MobiSys ’03, ACM, pp. 43–56.

[44] Ramakrishnan, R., and Gehrke, J. Database Management Systems,
3 ed. McGraw-Hill, Inc., New York, NY, USA, 2003.

15

[45] Roy, S., Kot, L., Bender, G., Ding, B., Hojjat, H., Koch, C., Foster,
N., and Gehrke, J. The homeostasis protocol: Avoiding transaction
coordination through program analysis. In ACM SIGMOD International
Conference on Management of Data (SIGMOD) (2015).

[46] Shamis, A., Renzelmann, M., Novakovic, S., Chatzopoulos, G.,
Dragojevic, A., Narayanan, D., and Castro, M. Fast general dis-
tributed transactions with opacity. In ACM SIGMOD International
Conference on Management of Data (SIGMOD) (June 2019).

[47] Shapiro, M., Preguiça, N., Baqero, C., and Zawirski, M. Conflict-
free replicated data types. In Proceedings of the 13th International
Conference on Stabilization, Safety, and Security of Distributed Systems
(Berlin, Heidelberg, 2011), SSS’11, Springer-Verlag, pp. 386–400.

[48] Shapiro, M., Preguiça, N. M., Baqero, C., and Zawirski, M. Con-
vergent and commutative replicated data types. Bulletin of the EATCS
104 (2011), 67–88.

[49] Sharfman, I., Schuster, A., and Keren, D. A geometric approach to
monitoring threshold functions over distributed data streams. ACM
Transactions on Database Systems 32, 4 (Nov. 2007).

[50] Singhal, S. K., and Cheriton, D. R. Using a position history-based
protocol for distributed object visualization. Technical Report CS-TR-94-
1505, Stanford University, Department of Computer Science, Stanford,

CA, USA, Feb. 1994.
[51] Taylor, S. J., Saville, J., and Sudra, R. Developing interest manage-

ment techniques in distributed interactive simulation using java. In
1999 Winter Simulation Conference Proceedings (Dec. 1999), vol. 1, IEEE,
pp. 518–523.

[52] Terry, D. B., Prabhakaran, V., Kotla, R., Balakrishnan, M., Aguil-
era, M. K., and Abu-Libdeh, H. Consistency-based service level agree-
ments for cloud storage. In 24th ACM Symp. on Operating System
Principles (SOSP) (2013).

[53] Vogels, W. Eventually consistent. Commun. ACM 52, 1 (Jan. 2009),
40–44.

[54] Yu, H., and Vahdat, A. Design and evaluation of a continuous consis-
tency model for replicated services. In 4th USENIX Symp. on Operating
Systems Design and Implementation (OSDI) (2000).

[55] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,
M., Franklin, M. J., Shenker, S., and Stoica, I. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing.
In 9th USENIX Symp. on Networked Systems Design and Implementation
(NSDI) (2012).

16

	Abstract
	1 Introduction
	2 System Model
	3 Predictive Treaties by Example: Voting
	3.1 Enforcing Predicates with Slack
	3.2 Time-Dependent Treaties
	3.3 Preliminary Evaluation
	3.4 Hierarchical Treaties

	4 Predictive Treaties and Metrics
	4.1 Predictive Treaties
	4.2 Enforcing Predictive Treaties
	4.3 Metrics
	4.4 Models for Predicting Metrics
	4.5 Choosing Treaty Parameters Automatically
	4.6 Expiration

	5 Using Predictive Treaties
	5.1 Programming with Treaties and Metrics
	5.2 Stipulated Commit

	6 Implementation
	7 Evaluation
	7.1 Voting Microbenchmark
	7.2 Distributed Top-k Monitoring
	7.3 Modified TPC-C
	7.4 Discussion

	8 Related Work
	9 Conclusion
	References

