
Sharing Mobile Code Securely
With Information Flow Control

Owen Arden Michael D. George Jed Liu
K. Vikram Aslan Askarov Andrew C. Myers

{owen,mdgeorge,liujed,kvikram,aslan,andru}@cs.cornell.edu
Department of Computer Science

Cornell University

Abstract

Mobile code is now a nearly inescapable component of modern computing,
thanks to client-side code that runs within web browsers. The usual tension
between security and functionality is particularly acute in a mobile-code
setting, and current platforms disappoint on both dimensions.

We introduce a new architecture for secure mobile code, with which
developers can use, publish, and share mobile code securely across trust
domains. This architecture enables new kinds of distributed applications,
and makes it easier to reuse and evolve code from untrusted providers.
The architecture gives mobile code considerable expressive power: it can
securely access distributed, persistent, shared information from multiple trust
domains, unlike web applications bound by the same-origin policy. The core
of our approach is analyzing how flows of information within mobile code
affect confidentiality and integrity. Because mobile code is untrusted, this
analysis requires novel constraints on information flow and authority.

We show that these constraints offer principled enforcement of strong
security while avoiding the limitations of current mobile-code security
mechanisms. We evaluate our approach by demonstrating a variety of mobile-
code applications, showing that new functionality can be offered along with
strong security.

1. Introduction

We are entering an era in which code is exchanged rather
freely among networked computers. The web has made mo-
bile code a part of everyday life: visiting a web page typically
loads JavaScript code from multiple providers onto your
system. Web services such as Facebook allow third parties to
provide applications that are dynamically combined with their
core functionality. Even traditional desktop applications are
dynamically downloading plugins from third-party providers.

Over the past few years a whole new ecosystem of mobile-
code development has sprung up in which web programmers
reuse and customize JavaScript code found on the web for
their own purposes. Sometimes programmers copy code and
modify it for their purposes; sometimes they write web ap-
plications that import code directly via URL. Various popular
JavaScript libraries have made this latter use common. Other
popular mobile-code platforms, including ActionScript (for
Flash) and Java, are not fundamentally different.

While there are many benefits to promiscuously sharing
mobile code, these benefits come at a cost: in general, it
is hard to determine if dynamically combining code from
multiple sources yields a secure application. On the web,
the main security safeguard is the same-origin policy [35],

which attempts to limit web applications to communication
with their originating website. This policy prevents many
useful applications yet also fails to address all the ways
that untrusted code can create security vulnerabilities. The
limitations on expressive power force developers to work
around the same-origin policy [14], potentially introducing
additional vulnerabilities. These problems will be exacerbated
as applications begin relying on persistent storage function-
ality provided by the recent HTML 5 specification [12].

The goal of this work is to create a platform that securely
supports the flexible use and reuse of mobile code that
developers clearly want. Our contribution is a system that
provides expressive power while protecting the confidentiality
and integrity of information—even though sharing happens
between sites lacking mutual trust. We take a holistic view of
security: not only must each individual application component
be secure, but also the entire assembly of code and data
from various providers must satisfy all participants’ security
requirements.

By their very nature, isolation mechanisms such as the
same-origin policy prevent sharing. In response to the need for
sharing, programmers inevitably open communication chan-
nels across isolation boundaries, reopening similar security
vulnerabilities in new guises. The usual response is to attempt
to control these channels using authorization mechanisms
such as capabilities. This attempt is doomed to fail. The
problem is that authorization is not compositional, because
it does not take into account what information is being
communicated—authorization mechanisms allow any com-
munication as long it is performed by an authorized principal.
Compositionality is needed for federated environments where
code and data from different sources are combined.

Information-flow control is an appealing alternative be-
cause it is inherently compositional. Information-flow control
mechanisms and policies have been developed for reason-
ing about confidentiality and integrity in decentralized sys-
tems [24, 25, 36, 40, 37, 38, 30, 20]. These systems ensure
that the flow of information is in accordance with policies
expressed as labels on resources. Enforcement is done through
some combination of static or dynamic mechanisms at either
the programming language level or at the operating system
level, and the use of these mechanisms can be proved to

ensure strong security properties [31]. However, these prior
systems do not support secure sharing of mobile code.

In our new mobile-code architecture, code becomes a
persistent resource managed by the system. The system allows
principals to publish code and tracks how much trust has been
placed in code by principals in the system, automatically
bounding the actions and privileges of the code according
to that trust. In addition, to support reuse and adaptation of
existing code, as happens in the web today, our new mobile-
code architecture provides mechanisms for secure evolution
of code and persistent data.

We have built a prototype of our secure mobile-code
platform as an extended version of the prototype Fabric
system [20, 19]. Fabric is a decentralized computing plat-
form that provides a high-level, object-oriented programming
model for secure distributed computation. While Fabric al-
ready addressed many distributed security issues, it did not
support mobile code. To distinguish the new version of Fabric
from the original, we refer to it as Mobile Fabric.

The advantage of working in the context of Fabric, rather
than, say, in JavaScript, is that we can solve a more gen-
eral, more abstract instantiation of the mobile-code prob-
lem. Working within the context of existing web standards
would obscure rather than illuminate the fundamental issues
of sharing untrusted and partially trusted code. Moreover,
the lessons learned from this work should be applicable to
web security as well; for example, the constraint placed on
code in Mobile Fabric might inform emerging cross-origin
policies [33], where attempts are being made to obtain some
of the expressive sharing obtained by Mobile Fabric.

The rest of the paper is structured as follows. Section 2
introduces a running example to demonstrate both the new
functionality that secure mobile code offers and the new
challenges it presents. Section 3 provides background on
decentralized information-flow control (DIFC) and its in-
stantiation in the Fabric system. Section 4 describes the
overall architecture, including the threat model, and Section 5
explains the new mechanisms required to securely execute
mobile code. Section 6 discusses mechanisms to support
secure evolution of mobile code. Section 7 describes the
prototype implementation of the new architecture, and Sec-
tion 8 presents performance and experience results. Section 9
discusses related work, and Section 10 concludes.

2. A mobile-code example: untrusted mashups

The “FriendMap” application illustrates the security chal-
lenges of allowing untrusted mobile code to operate on
sensitive data. This application enables a user of a social
network to create a map displaying the locations of their
friends. Let us call the user “Alice” and one of her friends
“Bob.” Figure 1 shows the interactions Alice’s client makes
while executing FriendMap. First, Alice’s client downloads
the application code (1) and executes it locally. FriendMap
then fetches the locations of Alice’s friends (2) from the social
network (“Snapp”), requests a map (3) from a third-party map

Alice's
client

Snapp
social

network

MapServ
map serviceFriendMap

mashup
application

map

Alice, Bob's
location info

post

code

4

3

2

1

Fig. 1: Overview of the social mashup example

service (“MapServ”), and plots the friends’ locations on the
map displayed to the Alice. Alice can also choose to post the
map (4) to the social network to share with her friends.

2.1. Security considerations

Even this simple example has complex security require-
ments because the principals trust each other to differing
degrees. For example, Alice trusts MapServ to learn some
information about her friends, but Bob may not trust MapServ
at all. In that case, FriendMap must avoid using his location
to compute the map request.

Similarly, although Bob trusts Alice to see his location, he
may not trust Alice’s friends with the same information. If
so, FriendMap must either avoid posting the resulting map
where Alice’s friends can see it or omit Bob’s location.

Further, none of the involved principals trust the provider
of the FriendMap code. Therefore some mechanism is needed
to ensure that the code enforces their policies; any principal
who controls this mechanism or the node on which it operates
must be trusted to enforce these policies. In this example, Bob
trusts Alice with the confidentiality of his location, so Alice’s
node is responsible for enforcing this confidentiality policy.

In real applications, policies are more nuanced than lists of
entities allowed to learn information. Bob may consider his
exact location confidential, but not his current zip code. This
is an example of declassification: some information about
Bob’s location is released, even though Bob’s precise location
is secret. The decision to declassify must be authorized by
Bob, so the code performing the declassification must either
be provided by or endorsed by Bob.

Existing platforms for secure mobile code fail to meet
the security requirements of FriendMap. Isolation-based ap-
proaches, such as the same-origin policy [35] and SFI [34],
entirely prevent applications from interacting with each other.
FriendMap would be unable to access the locations of Al-
ice’s friends, regardless of the policies on those locations.
Authorization approaches such as OAuth [11] suffer from
the opposite problem: once Alice’s client is able to see the
locations, nothing prevents FriendMap from leaking the data

to MapServ, her personal bulletin board, or even FriendMap’s
developers. By contrast, Mobile Fabric provides abstractions
and mechanisms to meet FriendMap’s security requirements.

2.2. Software construction and evolution

Reusing code improves productivity, interoperability, and
performance. But reusing and composing partially trusted
code and data presents new challenges. Developers need
assurance that their assumptions regarding a program’s depen-
dencies are met, particularly when the program manipulates
sensitive data. For instance, a developer might only trust
particular library vendors or particular library versions to
handle sensitive data. If a different library is used at run time,
the resulting program may be insecure or incorrect.

The developers involved in a collection of interdependent
code may have made conflicting assumptions about what
names in their code mean. Discovering and fixing such errors
at run time can be very difficult. Therefore, Mobile Fabric
includes support for detecting conflicting assumptions about
the binding of names in code (in particular, class names) to
actual code objects stored persistently in the system.

The problem of dependencies is made more complex
because real software evolves over time and because in Fabric,
code is tied to persistent objects whose behavior it defines.
As software evolves, changes to code may require replacing
or updating objects. In many updates, only a small percentage
of the code actually changes. Therefore, the goal of Mobile
Fabric is to allow the reuse of compiled code and persistent
objects without introducing inconsistencies.

Code sometimes evolves in a way that requires updates to
persistent data. In these cases it is important to be able to
migrate the data from one version to another, even though
the code for the old version may resolve names in a way that
is inconsistent with the new version.

As we show in Section 6, Mobile Fabric provides the
flexibility to securely and incrementally evolve and extend
programs constructed from software components from mul-
tiple trust domains. It supports evolution of code and data,
while avoiding unnecessary updates to both.

3. Background: DIFC and Fabric

Mobile Fabric extends the Fabric system [20] with support
for mobile code. Fabric provides a high-level, language-based
abstraction for constructing secure distributed applications.
Its principled security enforcement makes Fabric a good
starting point for mobile code. However, Fabric’s security
mechanisms, both at the language and the system level, do
not handle code that might be supplied by an adversary.

Some additional background on Fabric will be helpful.
Fabric’s language model for distributed programs treats every
resource—distributed or local, persistent or non-persistent—
as an object in a Java-like object-oriented language. Compile-
time and run-time mechanisms protect the confidentiality and
integrity of information in Fabric by controlling information

flows. Flows within locally executed code are checked largely
at compile time. Run-time checking is primarily used at
remote calls to verify that the remote host node can be trusted
to enforce the information-flow policies of the call.

3.1. Objects

Principals, policies, remote hosts, local data, and remote
data are all language-level objects in Fabric, and objects may
reference any other object. Each object is given a unique
object identifier, or oid. An oid includes the host storing the
object, so an object can be located using only its oid, and
oids can be exported outside of Fabric.

3.2. Nodes

Fabric nodes serve different roles. Objects are stored per-
sistently on storage nodes (or just stores); computation takes
place on worker nodes (or workers). Workers fetch objects
from stores. The web analogue of workers and stores would
be clients and servers.

Fabric can express different styles of distributed compu-
tation, because a single computation can span both multiple
workers and multiple stores. This model is more general than
web applications, where computations cannot span multiple
client browsers. By default, Fabric computations use data
shipping: when computation at a worker needs a remote
object, the object’s store sends a copy of the object to the
worker. The worker pushes updates back to the object’s store
when the computation completes. In the FriendMap example,
Snapp and MapServ store objects used by the FriendMap
application. Alice’s worker initiates and coordinates the com-
putation, which includes a remote call to the MapServ worker
to generate maps. The data structure representing the resulting
map is fetched by Alice’s worker as FriendMap processes it
for display.

3.3. Delegating Trust

Fabric represents entities involved in a computation as
abstract principals. Principals may represent a single entity
such as a user or a Fabric node, or multiple entities such as
an organization or a group of friends.

A principal p may express trust in another principal q by
allowing q to act for it. In this case we write q < p, which
we read as “q acts for p”. We also sometimes say that “p
delegates to q”, or “p trusts q”. It is essentially the same as
q ⇒ p in many authorization logics (for example, [17]).

If q < p, then q may perform any action that p may
perform. For example, q may read any data that p can read,
or update any data that p may update. Principal q may also
downgrade policies owned by p.

In the FriendMap example, Snapp, MapServ, and
FriendMap are all principals, as are users, such as Alice and
Bob. The ability to create new principals allows for flexible,
fine-grained delegation. As shown in Figure 2, Snapp users
do not trust their friends’ principals. Instead, users have a

Snapp

Alice Bob

Alice.friends Bob.friends

Alice.locGrp Bob.locGrp

MapServ

FriendMap

in
cr

ea
si

ng
 tr

us
t

Fig. 2: Trust relationships in the FriendMap example.

separate principal (e.g., Alice.friends and Bob.friends)
representing the group of their friends, and that principal
delegates to each friend’s principal. Similarly, each user has a
principal (e.g., Alice.locGrp and Bob.locGrp) represent-
ing the group of principals who can learn the user’s location.

The acts-for relation is transitive: if p < q and q < r then
p < r. This allows policy changes to be implemented using
small changes in the acts-for hierarchy. For example, Bob
might decide that all of his friends should be able to read
his location. He can implement this by making Bob.locGrp
delegate to Bob.friends, as depicted in Figure 2. Since
Alice < Bob.friends, this immediately implies that Alice
< Bob.locGrp, allowing Alice to read Bob’s location.

The acts-for relationship is also used to express trust
in Fabric nodes. The roots of trust in Fabric are X.509
certificates [13] published by nodes. These certificates include
the node’s hostname and the oid of its principal object.

The set of principals generates a lattice ordered by <. The
top principal > acts for all other principals, and all principals
act for the bottom principal ⊥.

3.4. Labels

Fabric programs express security policies using labels.
Labels are drawn from the decentralized label model
(DLM) [25], and express policies in terms of principals.
Every object in Fabric has an object label describing the
confidentiality and integrity of its contents. This label is stored
persistently with the object, and constrains how information
can flow via the object. Information whose confidentiality is
too high or whose integrity is too low cannot be stored in
the object, and information from the object cannot flow to a
location whose confidentiality is too low or whose integrity
is too high. Labels are part of types, and compile-time label
checking controls information flow within programs with fine
granularity.

To support the decentralization of information-flow poli-
cies, each policy in a label is owned by a principal. A label
is a set of such owned policies. For example, Bob might
protect information about his location by the confidentiality
policy Bob→Bob.locGrp. This policy states that Bob owns

Alice’s friends list: {Alice←}
Bob’s location: {Bob←; Bob→ Bob.locGrp}
Requests to MapServ: {> → MapServ}
MapServ responses: {> ← MapServ}

Fig. 3: Labels in the FriendMap example

the information, but he allows the information to flow to the
locGrp principal (and implicitly to himself).

Integrity policies are also owned: the policy
Alice←Alice.friends means that Alice owns the
data, but that it may be influenced by her friends. This
policy is part of the label on Alice’s bulletin board on the
social network. The labels in the FriendMap example are
summarized in Figure 3.

Fine-grained principals like a user’s friend group allow
other principals to control the meanings of policies by chang-
ing the acts-for hierarchy. For example, Bob has allowed all
of his friends to read his location by making his locGrp
principal delegate to his friends principal. Alice has not
made this delegation, so her friends cannot read her location.

Informally, a principal p is trusted to enforce a label ` if
it can both see and affect data at that label. We express this
with the notation p < `. A principal is trusted to enforce a
confidentiality policy if it acts for a reader or owner of the
policy; it is trusted to enforce an integrity policy if it acts for
a writer or an owner of the policy.

3.5. Orderings on labels
The acts-for relation < gives rise to an information-

flow ordering ordering on labels. The ordering `1 v `2
captures when flow from label `1 to label `2 is secure.
We say “`1 can flow to `2” or “`1 is less restrictive
than `2”. For example, if Bob acts for Alice.friends,
then Alice→ Alice.friends v Alice→ Bob be-
cause fewer principals can learn information labeled
Alice→ Bob than could have learned information labeled
Alice→ Alice.friends.

The ordering `1 v `2 is used when checking information
flow within Fabric programs, both at compile time and at run
time. For example, when assigning from a variable with label
`1 to one with label `2, this ordering must hold.

3.6. Declassification and endorsement
In general, the ordering v only approximates the true infor-

mation security requirements of an application, so sometimes
it prevents flows that applications need. DIFC systems such
as Fabric allow these flows using downgrading operations.
Declassification is a downgrading operation which removes
confidentiality policies; endorsement is one that adds integrity
policies.

Fabric programs must explicitly specify declassification
and endorsement. Additionally, all policy-downgrading code
is marked with an authority clause that specifies the principal
authorizing the downgrade. This principal must act for the

owner of any policy that is weakened. Further, declassification
and endorsement may only happen in code whose control flow
is unaffected by low-integrity information. This rule enforces
robust downgrading [2], which prevents the adversary from
causing these operations to be misused.

The program-counter label, pc [23], identifies the in-
formation that influences whether a given program point
is reached. The Fabric type system requires that the left-
hand sides of assignments have labels higher than pc in
the information-flow ordering. For confidentiality, this rule
prevents information from leaking through implicit flows [8].
It is also crucial for integrity, where it prevents untrusted data
from indirectly influencing trusted data.

3.7. Adversaries

Every Fabric principal views every untrusted principal as
a potential adversary, so who the adversary is depends on
whom you ask. In the FriendMap example, the FriendMap
application provider is treated as an adversary since no one
trusts it. Similarly, Snapp and MapServ do not delegate to
anyone, so they consider everyone to be adversaries. For
simplicity, we assume that Alice and Bob delegate to Snapp,
so Snapp is not an adversary for them.

Fabric’s goal is to ensure that the security of a principal
does not depend on any part of the system that it considers
to be an adversary. This is called the decentralized security
principle. More precisely, the security of an object, expressed
by the policies in its label, should only depend on system
components that are trusted to enforce those policies. Thus,
the integrity of an object with label ` should be unaffected
by an adversary A unless A < I(`), and its confidentiality
should be unaffected unless A < C(`).

In a decentralized system, there is no single trusted comput-
ing base (TCB). In fact, the decentralized security principle
generalizes TCBs, because each label ` has its own trusted
computing base, consisting of the enforcement mechanisms
on nodes n where n < `. The decentralized security principle
is also more precise than TCBs, since it defines which security
policies ` may be violated if some set of components is
compromised.

4. An architecture for secure mobile code

The challenge of Mobile Fabric is to maintain the strong
yet decentralized security guarantees of Fabric while giving
adversaries the power to upload and execute mobile code. To
address this challenge, we add several new components to the
system architecture, depicted in Figure 4. As in Fabric, infor-
mation is stored in persistent objects that can refer to each
other. Unlike in Fabric, code can also be stored persistently
at stores, and downloaded and executed by workers. We will
call code stored in Fabric class objects (not to be confused
with Java class objects). Each object contains a reference to
a class object, which defines its structure and behavior.

Developer

User

checker

new class
source
code

verifier

class
object

executable
code

persistent
distributed objects

class
object

new class
objects

code

linker

loader

Fig. 4: Compiling, linking and loading mobile code

4.1. Producing mobile code
These new class objects are created and loaded onto stores

by Fabric workers. In particular, the Mobile Fabric compiler
and linker are themselves Fabric programs that code providers
can invoke to turn source code into Fabric objects. This
process is depicted in the “Developer” portion of Figure 4.

A novel feature of this design is placing information-flow
policies on class objects. Like other objects stored in Fabric,
class objects are given labels. These labels are essential for
preventing adversaries from using mobile code to compromise
integrity and confidentiality.

The code for a class can mention other classes, hence
the meaning of a class depends on other classes that it
names. Unlike in many other mobile-code platforms such as
JavaScript and Java, the binding between names and classes is
defined by the code developer when the class is published. We
call this linkage specification a codebase. Each class object
specifies its codebase.

Mobile Fabric extends the Fabric language to enable both
compile-time and run-time reasoning about the trust that can
be placed in code. Class source can explicitly refer to the
provider label of any class, including its own, using the name
provider. The provider label can appear in label annotations
checked at compile time, and can also be compared to other
labels at run time. Code is label-checked without making
any assumptions about the provider label. This forces all
assumptions about the code’s provider to be made explicit in
the source code so that the same source code can be securely
reused, relinked, or provided by different principals.

4.2. Executing mobile code
Code is executed at worker nodes. In the original Fabric

system, workers stored all code locally and implicitly trusted

it. In Mobile Fabric, workers may also fetch code from class
objects that are themselves stored in Fabric, as shown in the
“User” portion of Figure 4.

Workers load the code for a class when an instance of
that class is first fetched from a store or when the class is a
dependency of another class being loaded. The worker fetches
the class object and verifies the information flows within
the class’s code. Finally, it converts the class into executable
bytecode, thus allowing methods on the class to be invoked.

4.3. Threat model

An important component of any security architecture is
the threat model, which defines the power of the adversary.
Mobile Fabric allows a powerful adversary—one that is even
more powerful than in Fabric. Therefore, security assurance
is in some ways stronger than in the prior system.

As discussed in Section 3, any principal may be considered
an adversary, so we define the power of adversaries in terms
of untrustworthy principals. Since the system should be secure
from the viewpoint of every participating principal p, the
adversary is some principal A where A 6< p. Therefore, we
can analyze security assuming an arbitrary but unspecified
principal A. All of the security mechanisms are designed
to enforce security regardless of the particular choice of
adversary.

From the viewpoint of principal p, a node n might be
controlled by the adversary if n 6< p. This untrusted node
need not be running the Mobile Fabric implementation and
can therefore violate its rules. The node might participate
incorrectly in the low-level protocols that implement the
system. It might view or leak any keys or messages that
adversary-controlled nodes receive, and it can read and update
any state on any other node it acts for. We do assume
that the adversary cannot fabricate cryptographic signatures
or decrypt messages without the appropriate private keys;
therefore, trustworthy nodes can communicate with each other
over authenticated private channels.

Our goal is to allow secure interaction despite distrust, so
adversaries are able to read and update certain objects stored
at trustworthy nodes. In particular, a node n allows a node
a to read an object with low-confidentiality labels `; that is,
if a < C(`). This read is allowed even if n considers a an
adversary. Similarly, n allows a to update objects with low-
integrity labels (a < I(`)).

Class objects containing mobile code are particularly im-
portant examples of objects adversaries can affect. Adver-
saries can provide mobile code to trustworthy nodes, as long
as the code has a low integrity label. The challenge is to
prevent this code from compromising security.

Adversaries can also try to use remote calls to invoke
methods on trustworthy nodes. These calls are allowed only
if the initial pc label of the method is low-integrity.

Fabric uses SSL for communication, providing some pro-
tection against network adversaries. We therefore assume that
adversaries cannot tamper with network messages and that

they do not learn anything about the contents of network
messages unless they control the intended recipient. Because
network destinations are visible in network packets, the
adversary might be able to learn something from the existence
of a message, its source and destination, its size, or its timing.
We ignore these traffic analysis channels, as do most systems.
Fake traffic might mitigate these channels, though at a cost.

As in most work on distributed system security, timing,
termination [31], and progress channels [1] are largely ig-
nored. Termination and progress channels might be justifi-
ably ignored because they have low bandwidth, but timing
channels can have high bandwidth. There are two kinds of
timing channels: external and internal [32]. We do not attempt
to control covert external timing channels in this work; in
other words, adversarial nodes are assumed not to time when
messages arrive. Run-time mitigation methods (e.g., [15, 39]),
might be useful for limiting the bandwidth of these channels.
Internal timing channels arise when code running within
the system measures time, either explicitly or implicitly by
constructing a race among concurrent threads. Fabric does
not support fine-grained concurrency; a top-level transaction
must be sequential. Races between threads therefore involve
external communication with a store, and can be considered
external timing channels.

5. Securing mobile code

In the original Fabric system, workers trust all code they
execute. Since adversaries can provide code to workers in
Mobile Fabric, two key assumptions about code are inval-
idated: that all code goes through type checking and label
checking to ensure its information flows are secure, and that
code is provided by a trusted entity. Fabric also assumes
certain vulnerabilities arising from inconsistent objects and
read channels can be ignored safely because they are hard to
exploit without the complicity of trusted nodes.

In this section, we analyze the vulnerabilities inherent in
systems supporting mobile code and present our solutions for
preserving the security of Mobile Fabric using information
flow control. These solutions are summarized in Figure 5,
which also serves as a roadmap to the remainder of this
section.

5.1. Label-checking mobile code
We cannot be sure that code dynamically loaded by workers

respects information-flow policies. Therefore, at load time,
workers perform static label checking of all dynamically
loaded mobile code. Because type checking and label check-
ing are modular, this analysis can be performed whenever a
new class is encountered.

Code must be stored by Mobile Fabric in a form that
permits accurate static analysis. In the current prototype, code
is stored and loaded as source—like JavaScript but unlike
Java. Storing code as source is not essential to the design, and
other code formats such as abstract syntax trees or annotated
bytecode are possible.

• Mobile-code label checking (§5.1).
– adversary-provided code creates no insecure informa-

tion flows within trustworthy nodes
• Provider-bounded label checking (§5.2)

– untrusted code cannot corrupt high-integrity informa-
tion or downgrading decisions

– confidential code cannot affect public output
• Type fingerprint checking for remote calls (§5.4)

– information flows caused by remote calls comply with
integrity and confidentiality restrictions

• Type fingerprint checking when objects are loaded (§5.5)
– the dynamic types (including information-flow labels)

of objects are consistent with the static type.
• Access label checking (§5.6)

– information flows caused by fetching objects comply
with confidentiality restrictions

Fig. 5: Summary of the novel dynamic checks that trustworthy nodes
perform, and the invariants they preserve. These invariants enforce
the decentralized security requirements of Mobile Fabric.

1 String{user←user} password;
2 void initialize_password{user←user}() {
3 password = "init";
4 }

Fig. 6: Mobile code creating a vulnerability

Code is trusted if the user completely trusts the code
provider. According to the decentralized security principle,
the user can load such code without analyzing it. To accelerate
loading and execution, trusted code can be loaded as bytecode
or even as machine code.

5.2. Provider-bounded label checking

Label checking ensures all flows in code obey the
information-flow ordering, but this is not enough to stop
adversary-provided code from introducing vulnerabilities. For
example, a method like that in Figure 6 type-checks, because
only high-integrity information appears to influence the high-
integrity variable password: the literal init, and the fact that
the method was called, which is captured by the pc label at
the call site. The literal init is considered trusted because
the code is trusted, whereas pc at the call site is constrained
by the initial pc label of the method (the “begin label” [23]),
which in this case is trusted: {user←user}.

However, if the adversary convinces a trusted worker node
to use this code, it might be used to change the password, a
clear security vulnerability.

To solve this problem, we extend the program-counter (pc)
mechanism. With respect to a given adversary A, a high-
confidentiality context is a part of the program about whose
execution the adversary is not trusted to learn: A 6< C(pc). A
low-integrity context is a part of the program whose execution
the adversary can affect: A < I(pc). In either case, security

requires restricting how information flows out of the context,
so we refer to either sort of context as a high context.

The key to preventing attacks like that in Figure 6 is to
treat the code itself as information that affects the results
it produces. Therefore code is stored with an information-
flow label (the provider label) that bounds the influence of
the adversary on the code. In fact, this label is precisely the
object label of the class object.

To constrain untrusted code, we join the provider label into
the pc label. This makes sense because the code provider
affects the statements that are executed. If the code of Figure 6
is provided by an adversary, its low-integrity provider label
will effectively make the pc label low-integrity, preventing
any assignments to high-integrity variables such as the pass-
word. We refer to this analysis as provider-bounded label
checking.

The provider label also enforces robust downgrading, be-
cause it prevents the adversary from exploiting downgrading
to affect confidentiality and integrity. A provider label with
low integrity prevents the adversary from using declassifi-
cation and endorsement in provided code directly; it also
prevents the adversary from indirectly influencing declassifi-
cation and endorsement occurring in other code in the system
not provided by the adversary.

Provider-bounded label checking would prevent an adver-
sary from changing the password by providing the code,
because an adversarial provider can only provide code that
operates in a low-integrity context, and the high-integrity
assignment to password cannot occur in such a context.

As an additional benefit, the provider label makes a new
feature possible using the same mechanism: confidential code.
By creating code with a high-confidentiality provider label,
code publishers can safely put code into Fabric that contains
sensitive information such as proprietary algorithms.

The high-confidentiality label on the class object prevents
untrusted nodes from viewing that code directly. Provider-
bounded label checking enforces a stronger notion of security,
however: it prevents any data affected by the code from
flowing to untrusted nodes. If providers of confidential code
wish to make its results public, the results must be explicitly
declassified.

5.3. Provider-bounded authority

Another curb on the misuse of declassification and integrity
is the requirement that code possess the authority to perform
these operations. Code cannot weaken a confidentiality or in-
tegrity policy through declassification or endorsement, unless
the principal whose policy is being weakened grants the code
that authority.

Authority placed in mobile code cannot exceed the author-
ity of the code developer. This is expressed using a check on
integrity: for code that claims the authority of the principal
p, we ensure that I(provider) v {> ← p}.

5.4. Fingerprint checking for remote calls

The security of both Fabric and Mobile Fabric relies on
the assumption that trustworthy nodes agree on the types of
classes. When classes are distributed and stored by trusted
system administrators, as all classes in Fabric are, it is
reasonable to assume that nodes agree on types. But this
assumption is no longer safe when class objects can be
provided by untrusted nodes.

To see how this could lead to an attack, consider the
scenario where a user operates two trusted nodes, u1 and u2,
and u1 wishes to make a remote call to execute the attacker-
provided method harmless method at u2.

Assume that the attacker provides two different implemen-
tations of harmless method to the two nodes. Suppose that
u1 sees the following:

1 void harmless_method() {user→user} {
2 }

whereas u2 receives

3 void harmless_method() {user→public} {
4 public_data = true;
5 }

Both of these methods type-check. u1 is willing to make this
remote call in a context that would reveal confidential data,
because the begin label of harmless method prevents it
from having any public side effects. On the other hand, u2 is
willing to execute the method even though it has public side
effects, because its begin label requires it to be called in a
context that does not reveal any sensitive information.

However, when these two are combined, the type mismatch
allows the provider to trick the trusted worker into revealing
the user’s confidential information. It is not enough that the
methods both type-check in isolation; they must agree on the
types.

To ensure that the caller and the receiver of a remote call
agree on the types appearing in remotely-called methods,
a fingerprint [5] is sent along with each remote call. The
receiver checks that the invoked method has a matching
fingerprint. The fingerprint is computed as a secure hash
over the entire source code of the method’s class, including
the source code of any superclasses. This ensures more type
agreement than strictly necessary, but the same fingerprint has
other uses, so there is no harm in it.

A similar vulnerability can occur if a worker flushes the
cache of compiled classes: the adversary could make the type
of a method appear to change. To prevent this, the fingerprint
of a class must be preserved across cache flushes and checked
against the class when it is reloaded.

5.5. Fingerprint checking for object loading

An attacker who can change the class associated with an
object can cause nodes to disagree about the labels on the
object’s fields and methods. To prevent this attack, each object
stores its class fingerprint along with the pointer to its class
object. The fingerprint is checked against the class actually

loaded to ensure that the class accurately describes the object,
including security policies on its fields.

5.6. Access labels
When an object is accessed during computation on a

worker, but is not yet cached at the worker, the worker must
fetch the object data from the node where it is stored. Thus,
the contacted node learns that an access to the object has
occurred. When the access is a read, we call this side channel
a read channel.

In the original Fabric system, objects are placed onto stores
that can enforce their labels, including their confidentiality.
However, this does not prevent read channels. According to
this rule, public data can be stored on a low (adversary-
controlled) node. But then accesses to the object from a high
context would violate confidentiality.

Read channels are not controlled in the original Fabric
system, but they become easy to exploit once the adversary
can provide mobile code that generates such accesses. Read
channels are not a Fabric-specific problem, either—holes in
the same-origin policy also permit read channels: for example,
via images fetched from ad servers.

We control read channels by extending the programming
language. We add to each object a second label called the
access label. It is a confidentiality-only label that bounds what
can be learned from the fact that the object has been accessed.
The access label ensures that the object is stored on a node
that is trusted to learn about all the accesses to it, and it
prevents the object from being accessed from a context that is
too high. The access label has no integrity component because
there is no integrity dual to read channels.

The access label of an object is declared as part of the label
of its fields. Given object label `u and access label `a, a label
annotation `u@`a means that the field, and by extension the
object, has the corresponding labels.

For example, to declare an object containing public infor-
mation (in field data) that can be accessed without leaking
information (according to any principal that trusts node n to
enforce its confidentiality), we can write code like this:

1 class Public {
2 int {} @ {>→n} data;
3 }

Even though the information is public and untrusted (label
{}), objects of this class can be stored only on nodes that are
at least as trusted as node n. Conversely, if we had given the
field data the annotation {}@{}, the object could be stored
on any node, but the type system would prevent accesses from
non-public contexts.

Access labels require two new static checks in Fabric code:
1) The access label on fields allows the compiler to check

all reads from and writes to fields to ensure that they occur in
a low context. The program-counter label pc must be lower
than the access label (i.e., pc v `a) at each field access (read
or update). This is in addition to the existing check, inherited
from Jif [23], that requires pc v `u at each update.

2) At the point where an object is constructed using new,

the node at which the object is created must be able to enforce
the access label. In Fabric, an object of class C is explicitly
allocated at a node n using the syntax new C@n(...). We
require pc v `a and n < `a at this point in the code, because
node n learns about the future accesses to the object.

Access labels also interact with provider-bounded label
checking. Recall that the compiler ensures the initial pc of
methods contain at least as much confidentiality as the label
of the code. Therefore, the access label of objects used by
confidential code must be at least as high as the confidentiality
of the code.

Access labels also introduce a new dynamic check. When a
worker fetches an object, the access label bounds how much
information is leaked to the object’s store. However, if the
reference to the object is provided by an adversary, there is
no guarantee that the store is trusted to learn that information.
Therefore, before the fetch is performed, the worker must
check dynamically that the store can enforce the access label.

Mobile Fabric also encounters a new kind of read channel
that did not exist in the original Fabric system: class object
read channels. Fetching an object may require fetching its
class, so the class object must be stored on a node that
is trusted to enforce the object’s access label. To satisfy
this requirement without unnecessary restrictiveness, we can
ensure that when an object is created on a node, its class
object is stored at a suitably trusted node. Since the node
storing the object itself must be such a node, the class
object can be replicated onto the same node as the object if
necessary. Since class objects are immutable, their replication
is harmless in Fabric.

5.7. Other covert channels

Read channels are an example of channels that might
be exploited as covert channels [18]. The ability to control
mobile code clearly increases the power of the adversary to
exploit covert channels.

Covert channels fall into two categories: storage channels,
in which information is learned by observing the state of the
system independent of time, and timing channels, in which
information is learned from the time at which event occurs.
Many systems, especially those that support mobile code,
have both kinds of channels.

Fabric controls storage channels that are visible at the
language level, such as implicit flows [9] that arise from the
control flow of programs. Other storage channels exist below
the language level of abstraction and are blocked or mitigated
by a variety of mechanisms. For example, updates to objects
shared across a distributed computation are propagated among
worker nodes, but the information channel is mitigated cryp-
tographically.

As described in Section 4.3, we ignore some information
channels related to network traffic analysis.

6. Software reuse and evolution

Reusable software components help programmers develop
complex applications from smaller, modular fragments of
code. Using expressive component architectures comes at a
price, however. Many frameworks require complex interface
definitions or linkage specifications [29, 26, 10, 28], and
conflicting dependencies can result in dynamic linking errors
that are difficult to resolve.

The most common mobile code in use today, JavaScript
code distributed on the web, is not modular: it provides
no isolation between scripts loaded by the same webpage
so developers must resolve namespace collisions themselves.
Loading components into a single global namespace is overly
restrictive [3] and tends to make code unnecessarily bound
to specific versions of dependencies [28]. For instance, a
JavaScript program that imports one version of a library
may be difficult to compose with another program using
a different version. Yet version conflicts do not necessarily
represent fundamental incompatibilities—the choice of URL
may be arbitrary. Software that is compatible with multiple
configurations is easier to reuse and compose.

Modularity becomes more complicated in distributed set-
tings where nodes access and update persistent data. Here, a
schema defines the structure of persistent data and may evolve
over time. Likewise, programs interacting with the data may
expect it to be structured according to a specific version of
the schema. To ensure persistent data remains accessible, the
distributed system (or the programs themselves) must either
migrate the data to new schemas or handle it in a backward-
compatible way. Modularization helps isolate changes so that
more code and data remain compatible with each other.

The root of the problems caused by a lack of modularity
is that the meaning of code changes in different contexts.
Problems such as namespace collisions, dependency conflicts,
and data corruption are difficult to avoid without modularity
since the assumptions made by each context are often subtle.

We argue that the meaning of mobile code should be fixed
at publication. In Mobile Fabric, publishers distribute auto-
matically generated linkage specifications called codebases
along with published code. Codebases support decentralized
namespaces; a class’s own codebase defines the resolution of
its dependencies. This mechanism enables independent nodes
to resolve dependencies consistently without resorting to a
global namespace.

Importantly, name resolution and namespace isolation in
Mobile Fabric are orthogonal to security enforcement, un-
like in systems such as Java, JavaScript and SPIN [3].
Information-flow control restricts the use of resources rather
than the ability to name them. Linking against high-integrity,
high-authority code requires no special privilege; instead,
label checking ensures the end-to-end security of linked code.

6.1. Codebases
All class objects published in Mobile Fabric are associated

with a codebase. A codebase maps from class names to

published class objects, specifying a linkage for the static
types used in published components. Since linkage of a
component’s dependencies is fixed at publication, nodes that
download and compile mobile code independently can inter-
act with persistent data and each other robustly.

Loading components dynamically but linking them stati-
cally seems crucial for security. It also distinguishes Mobile
Fabric from other systems, such as Java, where there is no
guarantee that the class linked by the JVM at run time is the
same that was compiled against. By associating a codebase
with published classes, we make it possible for nodes to agree
about types in a decentralized way.

Figure 7 depicts two published classes, pkg.B and pkg.C,
and their respective codebases. To compile and run code
stored in the class pkg.B with dependency pkg.C, the follow-
ing steps occur. During compilation, the compiler consults the
entry for “pkg.C” in pkg.B’s codebase. This entry contains
a reference to the specific class object used to resolve the
dependency. Likewise, when compiling pkg.C the compiler
uses its codebase to resolve dependencies. If C was published
alongside B, the codebase will be the same one as before.
On the other hand, if C was published separately, then C’s
codebase will be different and may contain entries not present
in B’s codebase. Figure 7c shows the latter case. Solid arrows
indicate the class object a particular class name resolves to,
and dotted lines indicate the home codebase of a class. pkg.B
uses the codebase CB2 to resolve its dependencies while
pkg.C uses CB1. CB1 has a local reference to pkg.C while
CB2 contains a remote reference to the same object. Using this
process to resolve dependencies, nodes are able to compile
compatible versions of pkg.B independently.

Rather than forcing developers to create codebases by hand,
the Mobile Fabric compiler generates a codebase automati-
cally from the classpath and sourcepath specified during pub-
lication. This feature makes the potentially complex process
of linking and publishing reusable mobile components similar
to compiling programs with a traditional Java compiler and
linking with local libraries. Usually, classpath entries refer to
the codebases of dependencies already published in Fabric,
while sourcepath entries refer to local directories containing
source that will be published with the new codebase.

To protect the linkage of classes resolved by a codebase,
codebases have integrity labels that are at least as high as the
provider labels of the classes they are published with. To
prevent the adversary from exploiting codebases that violate
this constraint, the compiler checks that it holds at link time.

6.2. Namespace consistency

The independent components making up a complete pro-
gram often share common dependencies. In typical use, these
dependencies must resolve identically for all components. For
instance, the dependency might define an interface through
which components interact. In some cases, though, a compo-
nent’s use of a dependency is isolated from other components.
Consider a component that uses a regular expression library

to manipulate strings internally. If this component requires a
different version of the library than another component does,
it should in principle be safe to load both versions since the
usage of each library is isolated. Unfortunately, identifying
whether two conflicting dependencies are truly isolated from
each other is difficult.

Consider the code fragments shown in Figures 7a and 7b.
Imagine pkg.B extends a previously published class pkg.C.
Whether the method in B overrides C.m(A) depends on how A
is resolved. If A resolves to the same class used by C, then B’s
method overrides m, otherwise it doesn’t. Interestingly, both
cases result in fully type-checked code. Figure 7c shows the
latter case, where A is resolved differently by B’s codebase,
CB2, and Figure 7d shows the dependency graph induced by
the two class definitions.

Allowing programs with dependency graphs such as Fig-
ure 7d can result in subtle and surprising behavior. For
instance, calling the method m on an object of type B and
passing in a parameter of type pkg.A from CB2 will be
dispatched differently depending on the type of the reference
to the object receiving the call. For instance, if the reference
has type C, then C.m(Object) will be called since C.m(A)
uses the version of pkg.A from CB1. While it is possible the
code’s author intended this behavior, it is far more likely that
this behavior is unintentional.

Since errors related to inconsistent linkage are difficult
to detect and debug, we enforce a constraint on the static
dependencies of mobile code. The constraint is most easily
expressed in terms of a dependency graph such as the one
shown in Figure 7d. Nodes in the graph are published class
objects, and each edge is the resolution of a dependency using
the source node’s codebase. We require that a unique imple-
mentation of a dependency be reachable in the dependency
graph. In Figure 7d, two implementations are reachable for
pkg.A, so the compiler would reject publication of pkg.B.

Namespace consistency encourages modular design with-
out imposing a specific module system, thereby permitting a
wider range of workflows than previous systems. For instance,
independently linking components via common interfaces iso-
lates each component’s namespace and abstract dependencies
from their implementation. Provided the namespaces of these
components are consistent, an updated version of one com-
ponent may link against the other classes without changing
them. Programs can evolve incrementally and securely, while
avoiding unnecessary re-publication of classes.

The consistency constraint applies to the static dependen-
cies of a class and does not constrain the dynamic type of
objects beyond normal type safety. At run time, a reference
may point to an object whose class type is neither in the
class’s codebase nor consistent with its namespace. There is
no possibility for confusion, because our constraint ensures
that dependent code only interacts with the object via a
consistently resolved supertype.

1 package pkg;
2 class C {
3 void m(Object o) {
4 ...
5 }
6 void m(A a) {
7 ...
8 }
9 }

1 package pkg;
2 class B extends C {
3 void m(A a) {
4 ...
5 }
6 }

(a) A mobile superclass (b) A subclass of pkg.C

CB1 pkg.A

pkg.C

CB2 pkg.A

pkg.B

v1

v2

pkg.A
pkg.C

pkg.A
pkg.B
pkg.C pkg.B

pkg.A v2 pkg.A v1pkg.C

(c) Codebases (d) Dependency graph

Fig. 7: Two classes using different versions of pkg.A

6.3. Explicit Codebases

We introduce explicit codebases as a language mechanism
for referencing specific implementations of dependencies. An
explicit codebase is a name for a codebase object published
in Fabric. A programmer may use this alias to qualify
dependencies that should be resolved through the specified
codebase rather than the class’s codebase. Explicit codebases
may appear at the root of any fully qualified type name.
When a name is qualified via an explicit codebase, the
namespace of the specified dependency is isolated from that
of the dependent class. Because the programmer’s intention
is unambiguous, dependencies linked via explicit codebases
are exempt from namespace-consistency checks.

Explicit codebases may refer to multiple implementations
of a dependency in the same namespace. For instance, to
override the superclass method C.m(A) in pkg.B, the class
definition should read:

1 package pkg;
2 codebase cb1;
3 class B extends C {
4 void m(cb1.A a) {
5 ...
6 }
7 }

The publisher associates the alias “cb1” with a Fabric refer-
ence to codebase CB1 on the command line.

We expect explicit codebases to have two main uses. The
most common use is to support evolving published code.
Using explicit codebases, classes may provide methods or
implement interfaces that preserve compatibility with code
and persistent objects from older class versions. A second use
for explicit codebases is for composing software components
with conflicting dependencies. If software components have

conflicting dependencies that do not affect program function-
ality, it may be desirable to isolate the namespace of each
component using an explicit codebase.

7. Implementation

To evaluate our design, we extended the Fabric prototype
with support for mobile code, as described in this section.

7.1. Compiler
We extended the Fabric compiler to support the new

language features and analyzes. Additional extensions were
required to enable the compiler to load dependencies from
Fabric. Provider-bounded label checking is implemented as
part of Jif and is inherited by Fabric. These compiler changes
comprise about 12k lines of Java code.

7.2. Class loading
To load and run mobile code, we implemented a Java class

loader that is used by worker nodes. When the JVM requests
a new class, the class loader fetches the corresponding Fabric
FClass object, which contains references to its home code-
base, as well as the source code. To specify which codebase
should be used, the compiler mangles class names mentioned
by mobile code to include their home codebases.

After fetching a class object, the loader invokes the Fabric
compiler on the source code to verify the class and generate
bytecode. Important context information, such as the worker’s
principal, the run-time label of the code, and the codebase,
are also passed to the compiler. The compiler generates Java
bytecode and caches it locally in memory and on disk, so
that compilation can be reused. After compilation, the loader
reads the bytecode from cache and uses the Java class loader
API to load it into the JVM.

For bootstrapping purposes, certain system classes are
treated specially. They are loaded from bytecode on disk, in
much the same way as by the default Java classloader.

The definitions of the Codebase and FClass classes were
written in Fabric and contain about 90 lines of code. The
remaining changes to the runtime system comprise about
2,200 lines of Java code and 420 lines of Fabric code.

7.3. Limitations
Some mechanisms are not implemented in the current

Fabric implementation. These mechanisms should not have
any significant effect on the results reported here.

• Access labels are implemented, but full support for
run-time enforcement of access labels in multiworker
transactions is incomplete.

• When an object is fetched from a remote node, a
dynamic check is done to ensure that its class is a
subtype of the expected type of the reference to the
object. Currently this check does not take into account
parameters of parameterized types.

• We have not implemented the class object replication
scheme of Section 5.6.

1 Map {resLbl}
2 createMap (User user, label resLbl, label friendAccess)
3 where
4 { provider t MapServer.provider t pc t {⊥→;>←user} }
5 v { resLbl u {>→user.sn} u {>→ms} u friendAccess },
6 resLbl v {>→n},
7 localStore < resLbl
8 {
9 label fetchLabel = {resLbl u {>→ms}};

10 Box boundary = new Box(0,0,0,0);
11 for (User friend : user.friends)
12 if (friendAccess v {>→friend.sn})
13 && {friend→friend.locGrp} v fetchLabel)
14 boundary.expand(friend.location);
15 Map map = ms.getMap(boundary)
16 .copy(resLbl, localStore);
17 for (User friend : user.friends)
18 if (friendAccess v {>→friend.sn}
19 && {friend→friend.locGrp} v resLbl)
20 addPin(annotated, friend.location, friend);
21 return map;
22 }

Fig. 8: An important part of the FriendMap code. Some details have
been changed for clarity (e.g., Fabric does not currently support Java
5’s for-loop syntax, and some error handling has been elided).

8. Evaluation

Our architecture has three key goals. First, it should be
secure. This topic has been discussed throughout the paper.
Second, it should be expressive; it should enable a range
of useful applications to be built. Third, it should have
acceptable performance.

To evaluate the system, we implemented two example
applications, which include the FriendMap application. These
examples cover many of the current uses of mobile code,
but also enable new functionality. These example applications
work correctly on our prototype implementation, demonstrat-
ing that provider-bounded security verification allows interest-
ing code and that codebases enable incremental development.
Performance measurements from these examples suggest that
run-time overhead is acceptable for many uses.

8.1. FriendMap example

To show that Mobile Fabric is sufficiently powerful to se-
curely implement interesting functionality, we implemented a
prototype of the FriendMap example. It contains roughly 2500
lines of Fabric code, roughly 200 of which implement the
extended versions of FriendMap and Snapp. FriendMap was
developed over the course of six weeks by two developers.

As described in Section 2, the application runs on Alice’s
worker, and integrates code from FriendMap, MapServ, and
Snapp with data from Snapp and MapServ.

Figure 8 shows the method createMap, which provides
the key functionality of FriendMap. This method computes
a bounding box of a user’s friends (lines 9–14), uses that
bounding box to fetch an image from MapServ and construct
a private copy (lines 15–16), and then annotates that map with
the user’s friends’ locations (lines 17–20).

The method takes the dynamic labels resultLbl and
friendAccess as arguments. The resultLbl argument de-
scribes the policy on the created map; it is used in lines 13
and 19 to ensure that friends with private locations will not
affect the resulting map.

The friendAccess argument allows the caller to specify a
bound on the access labels of the friends who are fetched. This
allows a user to plot friends stored on other social networks,
while preventing the user from fetching those objects if the
friends’ social networks are not trusted to learn about the state
of the computation (lines 12 and 18).

In addition to these dynamic checks, this code requires
further relationships between various labels in order to be
considered secure. These relationships are demanded by the
where clauses on lines 3–7, which are required to be checked
by any method that calls createMap.

For example, the first clause (on lines 4–5) guards the
flows of information from the code itself (labeled provider
and MapServer.provider), from the fact that the method
was called (labeled pc), and from the user’s set of friends
(labeled {⊥→; >←user}) to effects on the resulting map
(labeled resLbl), as well as fetches of the user’s object, the
map server’s initial map, and the friends (with access labels
{*→user.sn}, {*→ms} and friendAccess respectively).

Omitting any of the where clauses or the dynamic checks
in this example would lead to exploitable information flows
in the FriendMap application. Mobile Fabric requires the
FriendMap developers to insert these checks; without them
the application would fail to compile, and thus users would
not be able to execute them.

We also implemented one of the evolution scenarios de-
scribed in Section 6. We implemented a second version of
the Snapp codebase that adds a mood field to User objects.
The version 2 classes use the explicit codebase feature to
refer to the version 1 classes, and the User class in version 2
extends the User class in version 1.

We subsequently extended the FriendMap application to
make use of this extended functionality. FriendMap version 2
extends FriendMap version 1, and overrides the implementa-
tion of the addPin method to color the added pin using the
user’s mood. Because version 2 is a backwards compatible
extension of version 1, it must be able to handle version 1
User objects that have no moods. The implementation uses
explicit codebases to perform dynamic type checks, and falls
back to version 1 behavior if version 1 users are encountered.

8.2. Bidding agent example

In this example, a user supplies an agent to choose between
two ticket offers made by different airlines. The choice may
depend on factors confidential to the user, such as preferred
price or expected service level. Airlines, in turn, supply agents
that compete for the best offer to provide to the user, while
maximizing profit. This example is about 570 lines of code.

Four parties participate: a trusted broker, two airlines, and
the user. They are represented by Fabric principals Broker,

1 interface UserAgent[label L] {
2 int {L} choice(Offer[L]{L} offer1,
3 Offer[L]{L} offer2);
4 }
5 interface Agent[principal A, label L] {
6 void prepareForAuction{A→;A←}();
7 Offer[L]{L} makeOffer {L} (
8 UserAgent[L]{L} userChoice,
9 Offer[L]{L} bestOffer);

10 ...
11 }

Fig. 9: Interfaces provided by Broker

1 label{Broker←} auction =
2 new label{Broker→;User←;AirlineA←;AirlineB←}
3 Agent[AirlineA,auction] agentA = a.getAgent(auction);
4 Agent[AirlineB,auction] agentB = b.getAgent(auction);
5 UserAgent[auction] userAgent = u.getAgent(auction);

Fig. 10: Initializing airline and user agents

AirlineA, AirlineB, and User. Principal Broker is trusted
by others: Broker<AirlineA, Broker<AirlineB, and
Broker<User; no other trust relationships are assumed.
Every principal is associated with a Fabric store.

To facilitate interaction of different mobile agents, Broker
publishes interfaces, illustrated in Figure 9, for the airlines’
and user’s agents. The interfaces use principal and label
parameterization, a Fabric language feature that facilitates
modular development and genericity. Interface UserAgent
has a label parameter L that corresponds to the security level
of the offers that it chooses from. The choice function
returns -1 if the first offer is preferred, 1 if the second offer
is preferred, and 0 if offers are equally preferred. Interface
Agent for airline agents uses two parameters: A for the airline
principal and L for the label of the offers. Two noteworthy
methods here are prepareForAuction and makeOffer.
Method prepareForAuction may be called before bidding
starts. The begin-label of this method, {A→;A←} permits
information about calling this method to be observed by
airline A. This permits airline agents to fetch new information
from airline airlines, such as seat availability or current
lowest prices. Method makeOffer is called during the bidding
phase and generates a new offer to the user’s agent. The
signature of this method records the key feature of our mobile-
code framework: the user’s agent is passed in as a method
argument, and can be called internally by the airline agent.
Similarly, the current best offer is passed as another argument,
allowing the agent to find an offer better than the current best
according to the user—while still trying to maximize profit.
The enforcement of information-flow policies ensures that no
confidential information (such as the user’s maximum price
or offers from competing airlines) flows from the agents to
the principals that provided them, despite the fact that these
agents process this sensitive information directly.

Figure 10 shows initialization of mobile agents. Lines 1–2
declare a label auction at which offers are produced. The
confidentiality component of this label, {Broker→}, records

Execution time (ms)

FriendMap Bidding

Java class loader 1 2
Bytecode cache 42 217
Deserializing 6 3
Compiling 15,514 8,693
Loading 3 6

Total 15,566 8,921

Downloaded code size 58 kB 19 kB

Fig. 11: Execution time for the steps required to verify and load
dynamically compiled mobile code, averaged over five runs.

that an offer may only be read by Broker; the integrity
component of this label User←;AirlineA←;AirlineB←
record that the choice of an offer may be influenced by
all three principals (the user and both airlines). Lines 3–
5 initialize the airline and user agents, and illustrate how
principal and label parameters are provided. To inform the
user of the auction result, the winning agent and offer need
to be declassified. This requires the authority of Broker; for
example, to declassify the winner, the broker performs:
1 declassify (
2 endorse (winner, {*auction} to {Broker→;Broker←})
3 to {Broker→User;Broker←})

Before declassifying winner, this code endorses it to
integrity {Broker←}. Without this endorsement, the de-
classification would not be robust: a potentially untrusted
principal User could influence what confidential information
he or she learns. Direct endorsement recognizes this influence.
Declassification of the winning offer is similar.

8.3. Performance evaluation
Support for mobile code affects the performance of the

system in two ways. First, there is additional work required
to dynamically load and analyze new code. Second, linking
with remote classes imposes some execution overhead.

To evaluate these impacts, we have broken down the
execution time of the two examples. These measurements
were performed on an Intel Core i7-860 with 4 GiB RAM.
Figure 11 gives the execution time of each step required to
load the mobile classes from Fabric into the JVM.

As expected, almost all the time is spent invoking the
compiler to analyze the code and generate bytecode. Our
compiler has not yet been optimized for run-time compilation,
so we expect to be able to reduce that time significantly. More
importantly, we can often avoid the analysis entirely—when
either the worker has compiled the class in the past, or the
worker trusts the provider of the code to correctly compile it.

To demonstrate this, Figure 12 shows the time required
to load the classes in our examples, in two scenarios: with
all classes dynamically compiled at load time, and with all
classes pre-compiled and locally cached. We have also back-
ported the bidding agent example to the original non-mobile
Fabric prototype, and give the load time for that as well.

Total load time
for all classes (ms)

FriendMap Bidding

Dynamically compiled 15,600 9,188
Locally cached 26 298
Non-mobile Fabric — 20

Fig. 12: Total time spent in the class loader, under different
conditions. We present the mean over five runs.

Total execution time (ms)

OO7 FriendMap Bidding

Uncached — 17,995 14,210
Cached 39 4,910 5,999
Non-mobile 36 — 4,873

Fig. 13: Running time of OO7 and the mobile-code examples

To evaluate the run-time overhead of our codebase mecha-
nism, we reran two traversals from the Fabric implementation
of the OO7 Object Oriented Database benchmark suite [6].
This benchmark fetches and calls methods on a large number
of objects. To focus on the run-time overhead of mobile
code, we ran the benchmarks with compiled bytecode cached
locally, and compared this with the original Fabric system.
The results of this benchmark are shown in Figure 13.

Comparing Figures 12 and 13 shows that the uncached
execution time with class loading removed is less than the
cached execution time. This shows that compiling code has
side effects, such as populating the object cache, that would
have been performed anyway.

9. Related work

The Fabric system [20, 19] supports secure programming
in a decentralized system, but it does not have mechanisms
for secure mobile code. This paper has shown how to extend
the Fabric run-time system and language to support mobile
code, and has controlled some covert channels in Fabric.

The DStar system [38] provides OS-level enforcement of
secure information flow across a federated system. It uses
“exporters” to map machine-level security policies into a
distributed context, allowing hosts to define the degree of trust
between host nodes. DStar has no notion of code integrity or
secrecy, and does not support mobile code; publishing and
installation of code lies outside the system. The dynamic
enforcement in DStar and in earlier OS-level systems [37, 16]
tracks information flows coarsely; to manage information of
different security levels, the application must be partitioned
accordingly. Declassification is needed more often, and its
scope is an entire process rather than a single data item.

Information-flow control for JavaScript has been explored,
in which loaded code is dynamically checked against stati-
cally identified residual information-flow requirements [7].

Cross-origin resource sharing (CORS) [33] extends the
same-origin policy to allow web sites to specify domains

that may load resources from other origins. A browser im-
plementing the CORS API performs a “preflight request” to
determine what restrictions apply to a resource before fetching
the resource. Policies are specified by web sites and users
have no explicit control over what policies are enforced.

Various attempts have been made to strengthen isolation
guarantees for JavaScript. Conscript [21] applies aspects to
JavaScript primitives, isolating loaded scripts in useful ways.

Caja [22] uses capabilities to provide isolation in web
mashups. Caja capabilities protect access to resources at a
fine granularity. Secure information flow can be enforced by
checking capabilities at statically predetermined locations [4],
assuming a static analysis of information flow.

System extensibility and evolution has been explored in
many contexts. To our knowledge, Mobile Fabric is the first
system to address the information security of the assembly
and evolution of components in a general distributed setting.

SPIN [3] is an extensible operating system that allows core
kernel functionality to be dynamically specialized by modules
written in Modula-3. Like Mobile Fabric, SPIN leverages
language-level features like interfaces and type safety to pro-
vide isolation for untrusted system modules. Unlike Mobile
Fabric, SPIN uses namespace isolation to control access to
system resources: capabilities are implemented as references
to system resources, with a type capturing access privileges.
In contrast, name resolution in Mobile Fabric is mostly
orthogonal to security, and the security implications of linking
with low integrity code are captured by the type system.

Prior work on expressive module systems explored several
approaches to component reuse and evolution. Unit [10] and
Knit [28] are component definition and linking languages that
enable programmatic assembly of components. Composite
units are assembled out of smaller ones, and some architec-
tural properties are checked, such as type consistency (in [10])
or user-defined constraints (in [28]). These systems provide
more flexible control of namespaces, but they do not address
the security of the produced code.

Codebases have similarities to the classpath entries in
JAR files [27]. These references are neither versioned nor
immutable, so the meaning of Java classes can change over
time. JAR files allow packages to be sealed, to control who
can insert classes into them. Sealing is orthogonal to our
consistency requirements: it does not ensure that classes are
named consistently nor that the meaning of code is fixed.

10. Conclusions

This paper describes a new kind of computing platform:
a decentralized platform for running mobile code securely,
subject to explicit policies for confidentiality and integrity.
A prototype of this platform has been implemented and
evaluated on various distributed applications. The platform
enables applications that would be disallowed by isolation-
based security mechanisms; the explicit policies used to
develop the applications help guide secure design.

The new mobile-code architecture is an interesting and
potentially useful artifact in its own right; because it addresses
a general problem, the principles and techniques that we
have described should be useful for making other distributed
systems secure, especially those employing mobile code.

Acknowledgments

We thank Danfeng Zhang, Dan Ports, David Schulze, and
Barbara Liskov for their suggestions regarding this work and
its presentation. Lucas Waye helped implement the class-
loading mechanisms of Mobile Fabric. Danfeng Zhang im-
proved declassification and error reporting. This work was
funded by a grant from the Office of Naval Research (ONR
N000140910652), by two grants from the NSF: 0424422 (the
TRUST center), and 0964409. This research is sponsored by
the Air Force Research Laboratory.

References
[1] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands.

Termination-insensitive noninterference leaks more than just a bit. In
ESORICS, pages 333–348, October 2008.

[2] Aslan Askarov and Andrew C. Myers. Attacker control and impact for
confidentiality and integrity. Logical Methods in Computer Science,
7(3), September 2011.

[3] Brian Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer,
David Becker, Marc Fiuczynski, Craig Chambers, and Susan Eggers.
Extensibility, safety and performance in the SPIN operating system. In
Proc. 15th ACM Symp. on Operating System Principles (SOSP), pages
267–284, December 1995.

[4] A. Birgisson and A. Sabelfeld. Capabilities for information flow. In
Proc. 6th ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, June 2011.

[5] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber.
Network objects. In Proc. 14th ACM Symp. on Operating System
Principles (SOSP), pages 217–230, December 1993.

[6] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 Benchmark.
In Proc. ACM SIGMOD International Conference on Management of
Data, pages 12–21, Washington D.C., May 1993.

[7] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged
information flow for JavaScript. In Proc. SIGPLAN 2009 Conference
on Programming Language Design and Implementation, June 2009.

[8] Dorothy E. Denning. Cryptography and Data Security. Addison-
Wesley, Reading, Massachusetts, 1982.

[9] Dorothy E. Denning and Peter J. Denning. Certification of programs
for secure information flow. Comm. of the ACM, 20(7):504–513, July
1977.

[10] Matthew Flatt and Matthias Felleisen. Units: cool modules for HOT
languages. In Proc. SIGPLAN 1998 Conference on Programming
Language Design and Implementation, May 1998.

[11] E. Hammer-Lahav. The OAuth 2.0 authorization protocol. Network
Working Group Internet-Draft, September 2011.

[12] Ian Hickson. HTML5: A vocabulary and associated APIs for HTML
and XHTML, version 1.5446, November 2011. W3C editor’s draft,
http://dev.w3.org/html5/spec.

[13] R. Housley, T. Polk, W. Ford, and D. Solo. Internet X.509 public key
infrastructure certificate and certificate revocation list (CRL) profile.
Internet RFC-3280, April 2002.

[14] Collin Jackson and Helen J. Wang. Subspace: Secure cross-domain
communication for web mashups. In WWW ’07, May 2007.

[15] B. Köpf and D. Basin. An information-theoretic model for adaptive
side-channel attacks. In CCS ’07, October 2007.

[16] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer,
M. Frans Kaashoek, Eddie Kohler, and Robert Morris. Information
flow control for standard OS abstractions. In Proc. 21st ACM Symp.
on Operating System Principles (SOSP), 2007.

[17] Butler Lampson, Martı́n Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: Theory and practice. In Proc.

13th ACM Symp. on Operating System Principles (SOSP), pages 165–
182, October 1991. Operating System Review, 253(5).

[18] Butler W. Lampson. A note on the confinement problem. Comm. of
the ACM, 16(10):613–615, October 1973.

[19] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, Owen
Arden, Danfeng Zhang, and Andrew C. Myers. Fabric 0.1. Software re-
lease, http://www.cs.cornell.edu/projects/fabric, September
2010.

[20] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and
Andrew C. Myers. Fabric: a platform for secure distributed computation
and storage. In Proc. 22nd ACM Symp. on Operating System Principles
(SOSP), pages 321–334, 2009.

[21] Leo A. Meyerovich and Benjamin Livshits. ConScript: Specifying and
enforcing fine-grained security policies for JavaScript in the browser.
In Proc. IEEE Symposium on Security and Privacy, May 2010.

[22] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe
active content in sanitized JavaScript, 2008.

[23] Andrew C. Myers. JFlow: Practical mostly-static information flow
control. In Proc. 26th ACM Symp. on Principles of Programming
Languages (POPL), pages 228–241, January 1999.

[24] Andrew C. Myers and Barbara Liskov. A decentralized model for
information flow control. In Proc. 17th ACM Symp. on Operating
System Principles (SOSP), pages 129–142, 1997.

[25] Andrew C. Myers and Barbara Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Software Engineering
and Methodology, 9(4):410–442, October 2000.

[26] OMG. The Common Object Request Broker: Architecture and Specifica-
tion, December 1991. OMG TC Document Number 91.12.1, Revision
1.1.

[27] Oracle Corp. JAR file specification, 1999.
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html.

[28] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eric
Eide. Knit: Component composition for systems software. In Proc.
4th USENIX Symp. on Operating Systems Design and Implementation
(OSDI), pages 347–360, October 2000.

[29] Dale Rogerson. Inside COM. Microsoft Press, Redmond, WA, 1997.
[30] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley,

and Emmett Witchel. Laminar: Practical fine-grained decentralized
information flow control. In Proc. SIGPLAN 2009 Conference on
Programming Language Design and Implementation, 2009.

[31] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications,
21(1):5–19, January 2003.

[32] Andrei Sabelfeld and David Sands. Probabilistic noninterference for
multi-threaded programs. In Proc. 13th IEEE Computer Security
Foundations Workshop, pages 200–214. IEEE Computer Society Press,
July 2000.

[33] Anne van Kesteren. Cross-origin resource sharing. W3C working draft,
W3C, March 2009. http://www.w3.org/TR/2009/WD-cors-20090317/.

[34] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. Efficient software-based fault isolation. In Proc. 14th ACM
Symp. on Operating System Principles, pages 203–216, December
1993.

[35] Michal Zalewski. Browser security handbook, part 2, 2009.
http://code.google.com/p/browsersec/wiki/Part2.

[36] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers. Secure program partitioning. ACM Transactions on Computer
Systems, 20(3):283–328, August 2002.

[37] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David
Mazières. Making information flow explicit in HiStar. In Proc.
7th USENIX Symp. on Operating Systems Design and Implementation
(OSDI), pages 263–278, 2006.

[38] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Se-
curing distributed systems with information flow control. In Proc. 5th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 293–308, 2008.

[39] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Predictive
mitigation of timing channels in interactive systems. In Proc. 18th ACM
Conf. Computer and Communications Security (CCS), pages 563––574,
October 2011.

[40] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve
Zdancewic. Using replication and partitioning to build secure dis-
tributed systems. In Proc. IEEE Symposium on Security and Privacy,
pages 236–250, Oakland, California, May 2003.

http://dl.acm.org/citation.cfm?id=1462485
http://dl.acm.org/citation.cfm?id=1462485
http://dl.acm.org/citation.cfm?id=1462485
http://www.cs.cornell.edu/andru/papers/robknowledge-lmcs.pdf
http://www.cs.cornell.edu/andru/papers/robknowledge-lmcs.pdf
http://www.cs.cornell.edu/andru/papers/robknowledge-lmcs.pdf
http://www-spin.cs.washington.edu/papers/index.html
http://www-spin.cs.washington.edu/papers/index.html
http://www-spin.cs.washington.edu/papers/index.html
http://www-spin.cs.washington.edu/papers/index.html
http://www-spin.cs.washington.edu/papers/index.html
http://www.cse.chalmers.se/~andrei/flowcaps.pdf
http://www.cse.chalmers.se/~andrei/flowcaps.pdf
http://www.cse.chalmers.se/~andrei/flowcaps.pdf
http://dl.acm.org/citation.cfm?id=168637
http://dl.acm.org/citation.cfm?id=168637
http://dl.acm.org/citation.cfm?id=168637
http://dl.acm.org/citation.cfm?id=170036.170041
http://dl.acm.org/citation.cfm?id=170036.170041
http://dl.acm.org/citation.cfm?id=170036.170041
http://dl.acm.org/citation.cfm?id=1542476.1542483
http://dl.acm.org/citation.cfm?id=1542476.1542483
http://dl.acm.org/citation.cfm?id=1542476.1542483
http://www.amazon.com/Cryptography-Security-Dorothy-Elizabeth-Robling/dp/0201101505
http://www.amazon.com/Cryptography-Security-Dorothy-Elizabeth-Robling/dp/0201101505
http://dl.acm.org/citation.cfm?id=359712
http://dl.acm.org/citation.cfm?id=359712
http://dl.acm.org/citation.cfm?id=359712
http://dl.acm.org/citation.cfm?id=277730
http://dl.acm.org/citation.cfm?id=277730
http://dl.acm.org/citation.cfm?id=277730
http://tools.ietf.org/html/draft-ietf-oauth-v2-22
http://tools.ietf.org/html/draft-ietf-oauth-v2-22
http://dev.w3.org/html5/spec
http://dev.w3.org/html5/spec
http://dev.w3.org/html5/spec
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc3280.txt
http://dl.acm.org/citation.cfm?id=1242655
http://dl.acm.org/citation.cfm?id=1242655
http://dl.acm.org/citation.cfm?id=1315282
http://dl.acm.org/citation.cfm?id=1315282
http://dl.acm.org/citation.cfm?id=1294293
http://dl.acm.org/citation.cfm?id=1294293
http://dl.acm.org/citation.cfm?id=1294293
http://dl.acm.org/citation.cfm?id=1294293
http://dl.acm.org/citation.cfm?id=362389
http://dl.acm.org/citation.cfm?id=362389
http://www.cs.cornell.edu/projects/fabric
http://www.cs.cornell.edu/projects/fabric
http://www.cs.cornell.edu/projects/fabric
http://www.cs.cornell.edu/projects/fabric
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://dl.acm.org/citation.cfm?id=1849992
http://dl.acm.org/citation.cfm?id=1849992
http://dl.acm.org/citation.cfm?id=1849992
http://en.wikipedia.org/wiki/Caja_project
http://en.wikipedia.org/wiki/Caja_project
http://www.cs.cornell.edu/andru/papers/popl99/popl99.pdf
http://www.cs.cornell.edu/andru/papers/popl99/popl99.pdf
http://www.cs.cornell.edu/andru/papers/popl99/popl99.pdf
http://www.cs.cornell.edu/andru/papers/iflow-sosp97/paper.html
http://www.cs.cornell.edu/andru/papers/iflow-sosp97/paper.html
http://www.cs.cornell.edu/andru/papers/iflow-sosp97/paper.html
http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf
http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf
http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html
http://dl.acm.org/citation.cfm?id=1251253
http://dl.acm.org/citation.cfm?id=1251253
http://dl.acm.org/citation.cfm?id=1251253
http://dl.acm.org/citation.cfm?id=1251253
http://dl.acm.org/citation.cfm?id=1542484
http://dl.acm.org/citation.cfm?id=1542484
http://dl.acm.org/citation.cfm?id=1542484
http://dl.acm.org/citation.cfm?id=1542484
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://dl.acm.org/citation.cfm?id=795151
http://dl.acm.org/citation.cfm?id=795151
http://dl.acm.org/citation.cfm?id=795151
http://dl.acm.org/citation.cfm?id=795151
http://www.w3.org/TR/2009/WD-cors-20090317
http://www.w3.org/TR/2009/WD-cors-20090317
http://dl.acm.org/citation.cfm?id=168635
http://dl.acm.org/citation.cfm?id=168635
http://dl.acm.org/citation.cfm?id=168635
http://dl.acm.org/citation.cfm?id=168635
http://code.google.com/p/browsersec/wiki/Part2
http://code.google.com/p/browsersec/wiki/Part2
http://www.cs.cornell.edu/andru/papers/sosp01/spp-tr.pdf
http://www.cs.cornell.edu/andru/papers/sosp01/spp-tr.pdf
http://www.cs.cornell.edu/andru/papers/sosp01/spp-tr.pdf
http://dl.acm.org/citation.cfm?id=2018419
http://dl.acm.org/citation.cfm?id=2018419
http://dl.acm.org/citation.cfm?id=2018419
http://dl.acm.org/citation.cfm?id=2018419
http://dl.acm.org/citation.cfm?id=1387610
http://dl.acm.org/citation.cfm?id=1387610
http://dl.acm.org/citation.cfm?id=1387610
http://dl.acm.org/citation.cfm?id=1387610
http://www.cs.cornell.edu/andru/papers/gentiming.html
http://www.cs.cornell.edu/andru/papers/gentiming.html
http://www.cs.cornell.edu/andru/papers/gentiming.html
http://www.cs.cornell.edu/andru/papers/gentiming.html
http://www.cs.cornell.edu/andru/papers/sp03.pdf
http://www.cs.cornell.edu/andru/papers/sp03.pdf
http://www.cs.cornell.edu/andru/papers/sp03.pdf
http://www.cs.cornell.edu/andru/papers/sp03.pdf

	Introduction
	A mobile-code example: untrusted mashups
	Security considerations
	Software construction and evolution

	Background: DIFC and Fabric
	Objects
	Nodes
	Delegating Trust
	Labels
	Orderings on labels
	Declassification and endorsement
	Adversaries

	An architecture for secure mobile code
	Producing mobile code
	Executing mobile code
	Threat model

	Securing mobile code
	Label-checking mobile code
	Provider-bounded label checking
	Provider-bounded authority
	Fingerprint checking for remote calls
	Fingerprint checking for object loading
	Access labels
	Other covert channels

	Software reuse and evolution
	Codebases
	Namespace consistency
	Explicit Codebases

	Implementation
	Compiler
	Class loading
	Limitations

	Evaluation
	FriendMap example
	Bidding agent example
	Performance evaluation

	Related work
	Conclusions

